
RFC 9813
Operational Considerations for Using TLS Pre-
Shared Keys (TLS-PSKs) with RADIUS

Abstract
This document provides implementation and operational considerations for using TLS Pre-
Shared Keys (TLS-PSKs) with RADIUS/TLS (RFC 6614) and RADIUS/DTLS (RFC 7360). The purpose
of the document is to help smooth the operational transition from the use of RADIUS/UDP to
RADIUS/TLS.

Stream: Internet Engineering Task Force (IETF)
RFC: 9813
BCP: 243
Category: Best Current Practice
Published: July 2025
ISSN: 2070-1721
Author: A. DeKok

InkBridge Networks

Status of This Memo
This memo documents an Internet Best Current Practice.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on BCPs is
available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9813

Copyright Notice
Copyright (c) 2025 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

DeKok Best Current Practice Page 1

https://www.rfc-editor.org/rfc/rfc9813
https://www.rfc-editor.org/info/rfc9813
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

2. Terminology

3. Justification of PSK

4. General Discussion of PSKs and PSK Identities

4.1. Guidance for PSKs

4.1.1. PSK Requirements

4.1.2. Usability Guidance

4.1.3. Interaction Between PSKs and RADIUS Shared Secrets

4.2. PSK Identities

4.2.1. Security of PSK Identities

4.3. PSK and PSK Identity Sharing

4.4. PSK Lifetimes

5. Guidance for RADIUS Clients

5.1. PSK Identities

5.1.1. PSK Identity Requirements

5.1.2. Usability Guidance

6. Guidance for RADIUS Servers

6.1. Current Practices

6.2. Practices for TLS-PSK

6.2.1. IP Filtering

6.2.2. PSK Authentication

6.2.3. Resumption

6.2.4. Interaction with Other TLS Authentication Methods

7. Privacy Considerations

8. Security Considerations

9. IANA Considerations

3

4

4

5

5

5

6

7

8

9

10

11

11

12

12

12

12

13

13

14

16

16

17

17

17

18

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 2

10. References

10.1. Normative References

10.2. Informative References

Acknowledgments

Author's Address

18

18

19

20

20

1. Introduction
The previous specifications "Transport Layer Security (TLS) Encryption for RADIUS"
and "Datagram Transport Layer Security (DTLS) as a Transport Layer for RADIUS"
defined how (D)TLS can be used as a transport protocol for RADIUS. However, those documents
do not provide guidance for using TLS Pre-Shared Keys (TLS-PSKs) with RADIUS. This document
provides that missing guidance, and gives implementation and operational considerations.

To clearly distinguish the various secrets and keys, this document uses "shared secret" to mean
"RADIUS shared secret", and "Pre-Shared Key (PSK)" to mean "secret keys that are used with TLS-
PSK".

The purpose of the document is to help smooth the operational transition from the use of the
insecure RADIUS/UDP to the use of the much more secure RADIUS/TLS. While using PSKs is often
less preferable to using public or private keys, the operational model of PSKs follows the legacy
RADIUS "shared secret" model. As such, it can be easier for implementers and operators to
transition to TLS when that transition is offered as a series of small changes.

TLS-PSK is intended to be used in networks where the addresses of clients and servers are
known, as with RADIUS/UDP. This situation is similar to the use case of RADIUS/UDP with shared
secrets. TLS-PSK is not suitable for situations where clients dynamically discover servers, as
there is no way for the client to dynamically determine which PSK should be used with a new
server (or vice versa). In contrast, dynamic discovery allows for a client or server to
authenticate a previously unknown server or client, as the parties can be issued a certificate by
a known Certification Authority (CA).

TLS-PSKs have the same issue of symmetric information between client and server: both parties
know the secret key. A client could, in theory, pretend to be a server. In contrast, certificates are
asymmetric, where it is impossible for the parties to assume the other's identity. Further
discussion of this topic is contained in Section 4.3.

Unless it is explicitly called out that a recommendation applies to TLS or DTLS alone, each
recommendation applies to both TLS and DTLS.

[RFC6614]
[RFC7360]

[RFC7585]

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 3

2. Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

External PSK
A PSK (along with a related PSK Identity) that is administratively configured. That is, one that
is external to TLS and is not created by the TLS subsystem.

Resumption PSK
A PSK (along with a related PSK Identity) that is created by the TLS subsystem and/or
application, for use with resumption.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

3. Justification of PSK
TLS deployments usually rely on certificates in most common uses. However, we recognize that
it may be difficult to fully upgrade client implementations to allow for certificates to be used
with RADIUS/TLS and RADIUS/DTLS. These upgrades involve not only implementing TLS, but can
also require significant changes to administration interfaces and application programming
interfaces (APIs) in order to fully support certificates.

For example, unlike shared secrets, certificates expire. This expiration means that a working
system using TLS can suddenly stop working. Managing this expiration can require additional
notification APIs on RADIUS clients and servers that were previously not required when shared
secrets were used.

Certificates also require the use of certification authorities (CAs) and chains of certificates.
RADIUS implementations using TLS therefore have to track not just a small shared secret, but
also potentially many large certificates. The use of TLS-PSK can therefore provide a simpler
upgrade path for implementations to transition from RADIUS shared secrets to TLS.

In terms of ongoing maintenance, it is generally simpler to maintain servers than clients. For
one, there are many fewer servers than clients. Servers are also typically less resource
constrained, and often run on general-purpose operating systems, where maintenance can be
automated using widely available tools.

In contrast, clients are often numerous, resource constrained, and likely to be closed or
proprietary systems with limited interfaces. As a result, it can be difficult to update these clients
when a root CA expires. The use of TLS-PSK in such an environment may therefore offer
management efficiencies.

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 4

4. General Discussion of PSKs and PSK Identities
Before we define any RADIUS-specific use of PSKs, we must first review the current standards
for PSKs, and give general advice on PSKs and PSK Identities.

The requirements in this section apply to both client and server implementations that use TLS-
PSK. Client-specific and server-specific issues are discussed in more detail later in this document.

4.1. Guidance for PSKs
We first give requirements for creating and managing PSKs, followed by usability guidance, and
then a discussion of RADIUS shared secrets and their interaction with PSKs.

4.1.1. PSK Requirements

Reuse of a PSK in multiple versions of TLS (e.g., TLS 1.2 and TLS 1.3) is considered unsafe (see
). Where TLS 1.3 binds the PSK to a particular key derivation function

(KDF), TLS 1.2 does not. This binding means that it is possible to use the same PSK in different
hashes, leading to the potential for attacking the PSK by comparing the hash outputs. While there
are no known insecurities, these uses are not known to be secure, and should therefore be
avoided. For this reason, an implementation use the same PSK for TLS 1.3 and for
earlier versions of TLS. The exact manner in which this requirement is enforced is
implementation-specific. One possibility is to have two different PSKs. Another possibility is to
forbid the use of TLS versions less than TLS 1.3

 adds a KDF to the import interface of (D)TLS 1.3, which binds the externally provided
PSK to the protocol version. That process is preferred to any trust-on-first-use (TOFU)
mechanism. In particular, that document:

... describes a mechanism for importing PSKs derived from external PSKs by including
the target KDF, (D)TLS protocol version, and an optional context string to ensure
uniqueness. This process yields a set of candidate PSKs, each of which are bound to a
target KDF and protocol, that are separate from those used in (D)TLS 1.2 and prior
versions. This expands what would normally have been a single PSK and identity into a
set of PSKs and identities.

An implementation use the same PSK for TLS 1.3 and for earlier versions of TLS. This
requirement prevents reuse of a PSK with multiple TLS versions, which prevents the attacks
discussed in . The exact manner in which this requirement is enforced
is implementation-specific. One possibility is to have two different PSKs. Another possibility is to
forbid the use of TLS versions less than TLS 1.3.

Implementations follow the directions of for the use of external PSKs
in TLS. That document provides extremely useful guidance on generating and using PSKs.

[RFC8446], Appendix E.7

MUST NOT

[RFC9258]

MUST NOT

[RFC8446], Appendix E.7

MUST [RFC9257], Section 6

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 5

https://rfc-editor.org/rfc/rfc8446#appendix-E.7
https://rfc-editor.org/rfc/rfc8446#appendix-E.7
https://rfc-editor.org/rfc/rfc9257#section-6

Implementations support PSKs of at least 32 octets in length, and support PSKs of
64 octets or more. As the PSKs are generally hashed before being used in TLS, the useful entropy
of a PSK is limited by the size of the hash output. This output may be 256, 384, or 512 bits in
length. Nevertheless, it is good practice for implementations to allow entry of PSKs of more than
64 octets, as the PSK may be in a form other than bare binary data. Implementations that limit
the PSK to a maximum of 64 octets are likely to use PSKs that have much less than 512 bits of
entropy. That is, a PSK with high entropy may be expanded via some construct (e.g., base32 as
seen in Section 4.1.2) in order to make it easier for people to interact with. Where 512 bits of
entropy are input to an encoding construct, the output may be larger than 64 octets.

Implementations require that PSKs be at least 16 octets in length. That is, short PSKs
 be permitted to be used, and PSKs be random. The strength of the PSK is not

determined by the length of the PSK, but instead by the number of bits of entropy that it
contains. People are not good at creating data with high entropy, so a source of cryptographically
secure random numbers be used.

Where user passwords are generally intended to be remembered and entered by people on a
regular basis, PSKs are intended to be entered once, and then automatically saved in a system
configuration. As such, due to the limited entropy of passwords, they are not acceptable for use
with TLS-PSK, and would only be acceptable for use with a password-authenticated key
exchange (PAKE) TLS method . Implementations therefore support entry and
storage of PSKs as undistinguished octets.

We also incorporate by reference the requirements of when using PSKs.

It may be tempting for servers to implement a TOFU policy with respect to clients. Such behavior
is . When servers receive a connection from an unknown client, they

 log the PSK Identity, source IP address, and any other information that may be relevant.
An administrator can then later look at the logs and determine the appropriate action to take.

MUST SHOULD

MUST MUST
NOT MUST

MUST

[RFC8492] MUST

[RFC7360], Section 10.2

NOT RECOMMENDED
SHOULD

4.1.2. Usability Guidance

PSKs in their purest form are opaque tokens, represented as an undistinguished series of octets.
Where PSKs are expected to be managed automatically by scripted methods, this format is
acceptable. However, in some cases it is necessary for administrators to share PSKs, in which
case human-readable formats may be useful. Implementations support entering PSKs
as both binary data and via a human-readable form such as hex encoding.

Implementations use a human-readable form of PSKs for interfaces that are intended to
be used by people, and allow for binary data to be entered via an application
programming interface (API). Implementations also allow for PSKs to be displayed in
the hex encoding mentioned above, so that administrators can manually verify that a particular
PSK is being used.

When using PSKs, administrators use PSKs of at least 24 octets that are generated using
a source of cryptographically secure random numbers. Implementers needing a secure random
number generator should see for further guidance. PSKs are not passwords, and
administrators should not try to manually create PSKs.

SHOULD

SHOULD
SHOULD

SHOULD

SHOULD

[RFC8937]

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 6

https://rfc-editor.org/rfc/rfc7360#section-10.2

In order to guide implementers and administrators, we give example commands below that
generate random PSKs from a locally secure source. While some commands may not work on
some systems, one of the commands should succeed. The intent here is to document a concise
and simple example of creating PSKs that are both secure and human-manageable. This
document does not mandate that the PSKs follow this format or any other format.

Only one of the above commands should be run; there is no need to run all of them. Each
command reads 128 bits (16 octets) of random data from a secure source, and encodes it as
printable and readable ASCII. This form of PSK will be accepted by any implementation that
supports at least 32 octets for PSKs. Larger PSKs can be generated by changing the "16" number
to a larger value. The above derivation assumes that the random source returns one bit of
entropy for every bit of randomness that is returned. Sources failing that assumption are

.

openssl rand -base64 16

dd if=/dev/urandom bs=1 count=16 | base64

dd if=/dev/urandom bs=1 count=16 | base32

dd if=/dev/urandom bs=1 count=16 | (hexdump -ve '/1 "%02x"' && echo)

NOT
RECOMMENDED

4.1.3. Interaction Between PSKs and RADIUS Shared Secrets

Any shared secret used for RADIUS/UDP or RADIUS/TLS be used for TLS-PSK.

It is that RADIUS clients and servers track all used shared secrets and PSKs, and
then verify that the following requirements all hold true:

no shared secret is used for more than one RADIUS client
no PSK is used for more than one RADIUS client
no shared secret is used as a PSK

Note that the shared secret of "radsec" given in can be used across multiple clients, as
that value is mandated by the specification. The intention here is to recommend best practices
for administrators who enter site-local shared secrets.

There may be use cases for using one shared secret across multiple RADIUS clients. There may
similarly be use cases for sharing a PSK across multiple RADIUS clients. Details of the possible
attacks on reused PSKs are given in .

There are no known use cases for using a PSK as a shared secret, or vice versa.

Implementations reject configuration attempts that try to use the same value for the PSK
and shared secret. To prevent administrative errors, implementations should not have
interfaces that confuse PSKs and shared secrets or that allow both PSKs and shared secrets to be
entered at the same time. There is too much of a temptation for administrators to enter the same

MUST NOT

RECOMMENDED

•
•
•

[RFC6614]

[RFC9257], Section 4.1

MUST

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 7

https://rfc-editor.org/rfc/rfc9257#section-4.1

value in both fields, which would violate the limitations given above. Similarly, using a "shared
secret" field as a way for administrators to enter PSKs is bad practice. The PSK entry fields need
to be labeled as being related to PSKs, and not to shared secrets.

4.2. PSK Identities
 requires that PSK Identities be encoded in UTF-8 format. However,

 describes the "Pre-Shared Key Extension" and defines the ticket as an
opaque string: "opaque identity<1..216-1>;". This PSK is then used in for
resumption.

These definitions appear to be in conflict. This conflict is addressed in ,
which discusses requirements for encoding and comparison of PSK Identities. Systems
follow the directions of when using or comparing PSK Identities for
RADIUS/TLS. Implementations follow the recommendations of for handling PSK
Identity strings.

In general, implementers should allow for external PSK Identities to follow and be
UTF-8, while PSK Identities provisioned as part of resumption are automatically provisioned,
and therefore follow .

Note that the PSK Identity is sent in the clear, and is therefore visible to attackers. Where privacy
is desired, the PSK Identity could be either an opaque token generated cryptographically, or
perhaps in the form of a Network Access Identifier (NAI) , where the "user" portion is
an opaque token. For example, an NAI could be "68092112@example.com". If the attacker
already knows that the client is associated with "example.com", then using that domain name in
the PSK Identity offers no additional information. In contrast, the "user" portion needs to be both
unique to the client and private, so using an opaque token is a more secure approach.

Implementations support PSK Identities of 128 octets, and support longer PSK
Identities. We note that while TLS provides for PSK Identities of up to 216-1 octets in length,
there are few practical uses for extremely long PSK Identities.

It is up to administrators and implementations as to how they differentiate external PSK
Identities from session resumption PSK Identities used in TLS 1.3 session tickets. While

 suggests the identities should be unique, it offers no concrete steps for
how this differentiation may be done.

One approach could be to have externally provisioned PSK Identities contain an NAI such as
what is described above, while session resumption PSK Identities contain large blobs of opaque,
encrypted, and authenticated text. It should then be relatively straightforward to differentiate
the two types of identities. One is UTF-8, the other is not. One is unauthenticated, the other is
authenticated.

Servers assign and/or track session resumption PSK Identities in a way that facilities the
ability to distinguish those identities from externally configured PSK Identities, and that enables
them to both find and validate the session resumption PSK. See Section 6.2.3 below for more
discussion of issues around resumption.

[RFC4279], Section 5.1
[RFC8446], Section 4.2.11

[RFC8446], Section 4.6.1

[RFC9257], Section 6.1.1
MUST

[RFC9257], Section 6.1.1
MUST [RFC8265]

[RFC4279]

[RFC8446]

[RFC7542]

MUST SHOULD

[RFC9257], Section 6.1.2

MUST

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 8

https://rfc-editor.org/rfc/rfc4279#section-5.1
https://rfc-editor.org/rfc/rfc8446#section-4.2.11
https://rfc-editor.org/rfc/rfc8446#section-4.6.1
https://rfc-editor.org/rfc/rfc9257#section-6.1.1
https://rfc-editor.org/rfc/rfc9257#section-6.1.1
https://rfc-editor.org/rfc/rfc9257#section-6.1.2

5.1.

5.1.1.
5.1.2.

5.2.

5.2.1.

5.2.2.

A sample validation flow for TLS-PSK Identities could be performed via the following steps:

PSK Identities provided via an administration interface are enforced to be only UTF-8 on
both client and server.
The client treats session tickets received from the server as opaque blobs.
When the server issues session tickets for resumption, the server ensures that they are not
valid UTF-8.
One way to do this is to use stateless resumption with a forced non-UTF-8 key_name per

, such as by setting one octet to 0x00.
When receiving TLS, the server receives a Client-Hello containing a PSK, and checks if the
identity is valid UTF-8:

If yes, it searches for a preconfigured client that matches that identity.

If the identity is found, it authenticates the client via PSK.
Else, the identity is invalid, and the server closes the connection.

If not, try resumption, which is usually handled by a TLS library.

If the TLS library verifies the session ticket, then resumption has happened,
and the connection is established.
Else, the server ignores the session ticket, and performs a normal TLS

handshake with a certificate.

This validation flow is only suggested. Other validation methods are possible.

1.

2.
3.

4.
[RFC8446], Section 4.6.1

5.

4.2.1. Security of PSK Identities

We note that the PSK Identity is a field created by the connecting client. Since the client is
untrusted until both the identity and PSK have been verified, both of those fields be
treated as untrusted. That is, a well-formed PSK Identity is likely to be in UTF-8 format, due to
the requirements of . However, implementations support managing
PSK Identities as a set of undistinguished octets.

It is not safe to use a raw PSK Identity to look up a corresponding PSK. The PSK may come from
an untrusted source and may contain invalid or malicious data. For example, the identity may:

have an incorrect UTF-8 format,
contain data that forms an injection attack for SQL, the Lightweight Directory Access
Protocol (LDAP), Representational State Transfer (REST), or shell meta characters, or
contain embedded NUL octets that are incompatible with APIs that expect NUL terminated
strings.

The identity may also be up to 65535 octets long.

As such, implementations validate the identity prior to it being used as a lookup key. When
the identity is passed to an external API (e.g., database lookup), implementations either
escape any characters in the identity that are invalid for that API, or else reject the identity

MUST

[RFC4279], Section 5.1 MUST

•
•

•

MUST
MUST

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 9

https://rfc-editor.org/rfc/rfc8446#section-4.6.1
https://rfc-editor.org/rfc/rfc4279#section-5.1

entirely. The exact form of any escaping depends on the API, and we cannot document all
possible methods here. However, a few basic validation rules are suggested, as outlined below.
Any identity that is rejected by these validation rules cause the server to close the TLS
connection.

The suggested validation rules for identities used outside of resumption are as follows:

Identities be checked to see if they have been provisioned as a resumption PSK. If so,
then the session can be resumed, subject to any policies around resumption.
Identities longer than a fixed maximum be rejected. The limit is implementation
dependent, but be less than 128, and be more than 1024. There is
no purpose to allowing extremely long identities, and allowing them does little more than
complicate implementations.
Identities configured by administrators be in UTF-8 format, and be in the
NAI format from . While defines the PSK Identity as
"opaque identity<1..216-1>", it is useful for administrators to manage human-readable
identities in a recognizable format.

This suggestion makes it easier to distinguish TLS-PSK Identities from TLS 1.3 resumption
identities. It also allows implementations to more easily filter out unexpected or bad
identities, and then to close inappropriate TLS connections.

It is that implementations extend these rules with any additional validation that
is found to be useful. For example, implementations and/or deployments could both generate
PSK Identities in a particular format for passing to client systems, and then also verify that any
received identity matches that format. For example, a site could generate PSK Identities that are
composed of characters in the local language. The site could then reject identities that contain
characters from other languages, even if those characters are valid UTF-8.

The purpose of these rules is to help administrators and implementers more easily manage
systems using TLS-PSK, while also minimizing complexity and protecting from potential
attackers' traffic. The rules follow a principle of "discard bad traffic quickly", which helps to
improve system stability and performance.

MUST

• MUST

• SHOULD
SHOULD NOT SHOULD NOT

• SHOULD SHOULD
[RFC7542] [RFC8446], Section 4.2.11

RECOMMENDED

4.3. PSK and PSK Identity Sharing
While administrators may desire to share PSKs and/or PSK Identities across multiple systems,
such usage is . Details of the possible attacks on reused PSKs are given in

.

Implementations support the ability to configure a unique PSK and PSK Identity for each
possible client-server relationship. This configuration allows administrators desiring security to
use unique PSKs for each such relationship. This configuration is also compatible with the
practice of administrators who wish to reuse PSKs and PSK Identities where local policies permit.

Implementations warn administrators if the same PSK Identity and/or PSK is used for
multiple client-server relationships.

NOT RECOMMENDED
[RFC9257], Section 4.1

MUST

SHOULD

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 10

https://rfc-editor.org/rfc/rfc8446#section-4.2.11
https://rfc-editor.org/rfc/rfc9257#section-4.1

4.4. PSK Lifetimes
Unfortunately, offers no guidance on PSK lifetimes other than to note in Section 4.2
that:

Forward security may be achieved by using a PSK-DH mode or by using PSKs with short
lifetimes.

It is that PSKs be rotated regularly. We offer no additional guidance on how
often this process should occur. Changing PSKs has a non-zero cost. It is therefore up to
administrators to determine how best to balance the cost of changing the PSK against the cost of
a potential PSK compromise.

TLS-PSK use modes such as PSK-DH or ECDHE_PSK that provide forward
secrecy. Failure to use such modes would mean that compromise of a PSK would allow an
attacker to decrypt all sessions that had used that PSK.

As the PSKs are looked up by identity, the PSK Identity also be changed when the PSK
changes.

Servers track when a connection was last received for a particular PSK Identity, and
 automatically invalidate credentials when a client has not connected for an extended

period of time. This process helps to mitigate the issue of credentials being leaked when a device
is stolen or discarded.

[RFC9257]

RECOMMENDED

MUST [RFC5489]

MUST

SHOULD
SHOULD

5. Guidance for RADIUS Clients
Client implementations allow the use of a Pre-Shared Key (PSK) for RADIUS/TLS. The client
implementation can then provide a user interface flag that is "TLS yes / no", and also provide
fields that ask for the PSK Identity and PSK itself.

For TLS 1.3, implementations support the "psk_dhe_ke" PSK Exchange Mode as discussed in
 and in . Implementations implement the

recommended cipher suites in for TLS 1.2 and in
for TLS 1.3. In order to future-proof these recommendations, we give the following
recommendations.

Implementations use the "Recommended" cipher suites listed in the IANA "TLS
Cipher Suites" registry:

For TLS 1.3, use the "psk_dhe_ke" PSK key exchange mode.
For TLS 1.2 and earlier, use cipher suites that require ephemeral keying.

If a client initiated a connection using a PSK with TLS 1.3 by including the PSK extension, it
close the connection if the server did not also select the PSK to continue the handshake.

MUST

MUST
[RFC8446], Section 4.2.9 [RFC9257], Section 6 MUST

[RFC9325], Section 4.2 [RFC8446], Section 9.1

• SHOULD

◦
◦

MUST

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 11

https://rfc-editor.org/rfc/rfc9257#section-4.2
https://rfc-editor.org/rfc/rfc8446#section-4.2.9
https://rfc-editor.org/rfc/rfc9257#section-6
https://rfc-editor.org/rfc/rfc9325#section-4.2
https://rfc-editor.org/rfc/rfc8446#section-9.1

5.1. PSK Identities
This section offers advice on both requirements for PSK Identities and on usability.

5.1.1. PSK Identity Requirements

 is silent on the subject of PSK Identities, which is an issue that we correct here.
Guidance is required on the use of PSK Identities, as the need to manage identities associated
with PSKs is a new requirement for both Network Access Server (NAS) management interfaces
and RADIUS servers.

RADIUS systems implementing TLS-PSK support identities as per
and enable configuring TLS-PSK Identities in management interfaces as per

.

The historic methods of signing RADIUS packets have not yet been broken, but they are believed
to be much less secure than modern TLS. Therefore, when a RADIUS shared secret is used to sign
RADIUS/UDP or RADIUS/TCP packets, that shared secret be used with TLS-PSK. If the
secrets were to be reused, then an attack on historic RADIUS cryptography could be trivially
leveraged to decrypt TLS-PSK sessions.

With TLS-PSK, RADIUS/TLS clients permit the configuration of a RADIUS server IP address
or host name, because dynamic server lookups can only be used if servers use
certificates.

[RFC6614]

MUST [RFC4279], Section 5.3
MUST [RFC4279],

Section 5.4

MUST NOT

MUST
[RFC7585]

5.1.2. Usability Guidance

In order to prevent confusion between shared secrets and TLS-PSKs, management interfaces and
APIs need to label PSK fields as "PSK" or "TLS-PSK", rather than as "shared secret".

6. Guidance for RADIUS Servers
In order to support clients with TLS-PSK, server implementations allow the use of a PSK
(TLS-PSK) for RADIUS/TLS.

Systems that act as both client and server at the same time share or reuse PSK
Identities between incoming and outgoing connections. Doing so would open up the systems to
attack, as discussed in .

MUST

MUST NOT

[RFC9257], Section 4.1

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 12

https://rfc-editor.org/rfc/rfc4279#section-5.3
https://rfc-editor.org/rfc/rfc4279#section-5.4
https://rfc-editor.org/rfc/rfc9257#section-4.1

For TLS 1.3, implementations support the "psk_dhe_ke" PSK Exchange Mode as discussed in
 and in . Implementations implement the

recommended cipher suites in for TLS 1.2 and in
for TLS 1.3. In order to future-proof these recommendations, we give the following
recommendations.

Implementations use the "Recommended" cipher suites listed in the IANA "TLS
Cipher Suites" registry:

For TLS 1.3, use the "psk_dhe_ke" PSK key exchange mode.
For TLS 1.2 and earlier, use cipher suites that require ephemeral keying.

The following section(s) describe guidance for RADIUS server implementations and
deployments. We first give an overview of current practices, and then extend and/or replace
those practices for TLS-PSK.

MUST
[RFC8446], Section 4.2.9 [RFC9257], Section 6 MUST

[RFC9325], Section 4.2 [RFC8446], Section 9.1

• SHOULD

◦
◦

6.1. Current Practices
RADIUS identifies clients by source IP address (see and) or by client
certificate (see and). Neither of these approaches work for TLS-PSK. This
section describes current practices and mandates behavior for servers that use TLS-PSK.

A RADIUS/UDP server is typically configured with a set of information per client, which includes
at least the source IP address and shared secret. When the server receives a RADIUS/UDP packet,
it looks up the source IP address, finds a client definition, and therefore the shared secret. The
packet is then authenticated (or not) using that shared secret.

That is, the IP address is treated as the client's identity, and the shared secret is used to prove the
client's authenticity and shared trust. The set of clients forms a logical database "client table"
with the IP address as the key.

A server may be configured with additional site-local policies associated with that client. For
example, a client may be marked up as being a Wi-Fi Access Point, a VPN concentrator, etc.
Different clients may be permitted to send different kinds of requests, where some may send
Accounting-Request packets, and other clients may not send accounting packets.

[RFC2865] [RFC6613]
[RFC6614] [RFC7585]

6.2. Practices for TLS-PSK
We define practices for TLS-PSK by analogy with the RADIUS/UDP use case and by extending the
additional policies associated with the client. The PSK Identity replaces the source IP address as
the client identifier. The PSK replaces the shared secret as proof of client authenticity and shared
trust. However, systems implementing RADIUS/TLS and RADIUS/DTLS
still use the shared secret as discussed in those specifications. Any PSK is only used by the TLS
layer and has no effect on the RADIUS data that is being transported. That is, the RADIUS data
transported in a TLS tunnel is the same no matter if client authentication is done via PSK or by
client certificates. The encoding of the RADIUS data is entirely unaffected by the use (or not) of
PSKs and client certificates.

[RFC6614] [RFC7360] MUST

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 13

https://rfc-editor.org/rfc/rfc8446#section-4.2.9
https://rfc-editor.org/rfc/rfc9257#section-6
https://rfc-editor.org/rfc/rfc9325#section-4.2
https://rfc-editor.org/rfc/rfc8446#section-9.1

In order to securely support dynamic source IP addresses for clients, we also require that
servers limit clients based on a network range. The alternative would be to suggest that RADIUS
servers allow any source IP address to connect and try TLS-PSK, which could be a security risk.
When RADIUS servers do no source IP address filtering, it is easier for attackers to send
malicious traffic to the server. An issue with a TLS library or even a TCP/IP stack could permit
the attacker to gain unwarranted access. In contrast, when IP address filtering is done, attackers
generally must first gain access to a secure network before attacking the RADIUS server.

Even where dynamic discovery is not used, the use of TLS-PSK across unrelated
organizations requires that those organizations share PSKs. Such sharing makes it easier for a
client to impersonate a server, and vice versa. In contrast, when certificates are used, such
impersonations are impossible. It is therefore to use TLS-PSK across
organizational boundaries.

When TLS-PSK is used in an environment where both client and server are part of the same
organization, then impersonations only affect that organization. As TLS offers significant
advantages over RADIUS/UDP, it is that organizations use RADIUS/TLS with TLS-
PSK to replace RADIUS/UDP for all systems managed within the same organization. While such
systems are generally located inside of private networks, there are no known security issues
with using TLS-PSK for RADIUS/TLS connections across the public Internet.

If a client system is compromised, its complete configuration is exposed to the attacker. Exposing
a client certificate means that the attacker can pretend to be the client. In contrast, exposing a
PSK means that the attacker cannot only pretend to be the client, but can also pretend to be the
server.

The main benefit of TLS-PSK, therefore, is that its operational processes are similar to that used
for managing RADIUS/UDP, while gaining the increased security of TLS. However, it is still
beneficial for servers to perform IP address filtering, in order to further limit their exposure to
attacks.

[RFC7585]

NOT RECOMMENDED

RECOMMENDED

6.2.1. IP Filtering

A server supporting this specification perform IP address filtering on incoming
connections. There are few reasons for a server to have a default configuration that allows
connections from any source IP address.

A TLS-PSK server be configurable with a set of "allowed" network ranges from which
clients are permitted to connect. Any connection from outside of the allowed range(s) be
rejected before any PSK Identity is checked. It is that servers support IP address
filtering even when TLS-PSK is not used.

The "allowed" network ranges could be implemented as a global list, or one or more network
ranges could be tied to a client or clients. The intent here is to allow connections to be filtered by
source IP address and to allow clients to be limited to a subset of network addresses. The exact
method and representation of that filtering is up to an implementation.

MUST

MUST
MUST

RECOMMENDED

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 14

Conceptually, the set of IP addresses and ranges, along with permitted clients and their
credentials, form a logical "client table" that the server uses to both filter and authenticate
clients. The client table should contain information such as allowed network ranges, PSK
Identity and associated PSK, credentials for another TLS authentication method, or flags that
indicate that the server should require a client certificate.

Once a server receives a connection, it checks the source IP address against the list of all allowed
IP addresses or ranges in the client table. If none match, the connection be rejected. That
is, the connection be from an authorized source IP address.

Once a connection has been established, the server process any application data
inside of the TLS tunnel until the client has been authenticated. Instead, the server normally
receives a TLS-PSK Identity from the client. The server then uses this identity to look up the
client in the client table. If there is no matching client, the server close the connection. The
server then also checks if this client definition allows this particular source IP address. If the
source IP address is not allowed, the server close the connection.

Where the server does not receive TLS-PSK from the client, it proceeds with another
authentication method such as client certificates. Such requirements are discussed elsewhere,
most notably in and .

An implementation may perform two independent IP address lookups: first to check if the
connection is allowed at all, and second to check if the connection is authorized for this
particular client. One or both checks may be used by a particular implementation. The two sets
of IP addresses can overlap, and implementations support that capability.

Depending on the implementation, one or more clients may share a list of allowed network
ranges. Alternately, the allowed network ranges for two clients can overlap only partially, or not
at all. All of these possibilities be supported by the server implementation.

For example, a RADIUS server could be configured to accept connections from a source network
of 192.0.2.0/24 or 2001:DB8::/32. The server could therefore discard any TLS connection request
that comes from a source IP address outside of that network. In that case, there is no need to
examine the PSK Identity or to find the client definition. Instead, the IP source filtering policy
would deny the connection before any TLS communication had been performed.

As some clients may have dynamic IP addresses, it is possible for one PSK Identity to appear at
different source IP addresses over time. In addition, as there may be many clients behind one
NAT gateway, there may be multiple RADIUS clients using one public IP address. RADIUS servers

 support multiple PSK Identifiers at one source IP address.

That is, a server needs to support multiple different clients within one network range, multiple
clients behind a NAT, and one client having different IP addresses over time. All of those use
cases are common and necessary.

The following section describes these requirements in more detail.

MUST
MUST

MUST NOT

MUST

MUST

[RFC6614] [RFC7360]

SHOULD

MUST

MUST

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 15

6.2.2. PSK Authentication

Once the source IP address has been verified to be allowed for this particular client, the server
authenticates the TLS connection via the PSK taken from the client definition. If the PSK is
verified, the server then accepts the connection and proceeds with RADIUS/TLS as per .

If the PSK is not verified, then the server close the connection. While TLS provides for
fallback to other authentication methods such as client certificates, there is no reason for a client
to be configured simultaneously with multiple authentication methods.

A client use only one authentication method for TLS. An authentication method is either
TLS-PSK, client certificates, or some other method supported by TLS.

That is, client configuration is relatively simple: use a particular set of credentials to
authenticate to a particular server. While clients may support multiple servers and fail-over or
load-balancing, that configuration is generally orthogonal to the choice of which credentials to
use.

[RFC6614]

MUST

MUST

6.2.3. Resumption

It is that servers enable resumption for sessions that use TLS-PSK. There
are few practical benefits to supporting resumption and many complexities.

However, some systems will need to support both TLS-PSK and other TLS-based authentication
methods such as certificates, while also supporting session resumption. It is therefore vital for
servers to be able to distinguish the use case of TLS-PSK with preconfigured identities from TLS-
PSK that is being used for resumptions.

The above discussion of PSK Identities is complicated by the use of PSKs for resumption in TLS
1.3. A server that receives a PSK Identity via TLS typically cannot query the TLS layer to see if
this identity is for a resumed session (which is possibly for another TLS authentication method),
or is instead a static pre-provisioned identity. This confusion complicates server
implementations.

One way for a server to tell the difference between the two kinds of identities is via construction.
Identities used for resumption can be constructed via a fixed format, such as what is
recommended by . A static pre-provisioned identity could be in the
format of an NAI, as given in . An implementation could therefore examine the
incoming identity and determine from the identity alone what kind of authentication was being
performed.

An alternative way for a server to distinguish the two kinds of identities is to maintain two
tables. One table would contain static identities, as the logical client table described above.
Another table could be the table of identities handed out for resumption. The server would then
look up any PSK Identity in one table, and if it is not found, query the other one. Either an
identity would be found in a table, in which case it can be authenticated, or the identity would
not be found in either table, in which case it is unknown, and the server close the
connection.

NOT RECOMMENDED

[RFC8446], Section 4.6.1
[RFC7542]

MUST

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 16

https://rfc-editor.org/rfc/rfc8446#section-4.6.1

As suggested in , TLS-PSK peers store resumption PSKs or tickets (and
associated cached data) for longer than 604800 seconds (7 days), regardless of the PSK or ticket
lifetime.

Since resumption in TLS 1.3 uses PSK Identities and keys, it is to permit
resumption of sessions when TLS-PSK is used. The use of resumption offers additional
complexity with minimal additional benefits.

Where resumption is allowed with TLS-PSK, systems cache data during the initial full
handshake sufficiently enough to allow authorization decisions to be made during resumption.
If the cached data cannot be retrieved securely, resumption be done. Instead, the
system perform a full handshake.

The data that needs to be cached is typically information such as the original PSK Identity, along
with any policies associated with that identity.

Information from the original TLS exchange (e.g., the original PSK Identity) as well as related
information (e.g., source IP addresses) may change between the initial full handshake and
resumption. This change creates a "time-of-check time-of-use" (TOCTOU) security vulnerability. A
malicious or compromised client could supply one set of data during the initial authentication
and a different set of data during resumption, potentially allowing them to obtain access that
they should not have.

If any authorization or policy decisions were made with information that has changed between
the initial full handshake and resumption, and if changes may lead to a different decision, such
decisions be reevaluated. Systems also reevaluate authorization and policy decisions
during resumption, based on the information given in the new connection. Servers refuse
to perform resumption where the information supplied during resumption does not match the
information supplied during the original authentication. If a safe decision is not possible, servers

 instead continue with a full handshake.

[RFC8446] MUST NOT

NOT RECOMMENDED

MUST

MUST NOT
MUST

MUST MUST
MAY

MUST

6.2.4. Interaction with Other TLS Authentication Methods

When a server supports both TLS-PSK and client certificates, it be able to accept
authenticated connections from clients that may use either type of credentials, perhaps even
from the same source IP address and at the same time. That is, servers are required to both
authenticate the client and also to filter clients by source IP address. These checks both have to
match in order for a client to be accepted.

MUST

7. Privacy Considerations
We make no changes to and .[RFC6614] [RFC7360]

8. Security Considerations
The primary focus of this document is addressing security considerations for RADIUS.

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 17

Previous specifications discuss security considerations for TLS-PSK in detail. We refer the reader
to , , and . Those documents are newer than

 and , and therefore raise issues that were not considered during the initial
design of RADIUS/TLS and RADIUS/DTLS.

Using TLS-PSK across the wider Internet for RADIUS can have different security considerations
than for other protocols. For example, if TLS-PSK was for client/server communication with
HTTPS, then having a PSK be exposed or broken could affect one user's traffic. In contrast,
RADIUS contains credentials and personally identifiable information (PII) for many users. As a
result, an attacker being able to see inside of a TLS-PSK connection for RADIUS would result in
substantial amounts of PII being leaked, possibly including passwords.

When modes providing forward secrecy are used (e.g., ECDHE_PSK as seen in and
), such attacks are limited to future sessions, and historical sessions are still secure.

Appendix E.7 of [RFC8446] [RFC9257] [RFC9258]
[RFC6614] [RFC7360]

[RFC5489]
[RFC8442]

9. IANA Considerations
This document has no IANA actions.

10. References

[RFC2119]

[RFC2865]

[RFC4279]

[RFC6614]

[RFC7360]

[RFC8174]

10.1. Normative References

, , ,
, , March 1997,
.

, , , and ,
, , , June 2000,

.

 and ,
, , , December

2005, .

, , , and ,
, , , May 2012,

.

,
, , , September 2014,

.

, ,
, , , May 2017,

.

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Rigney, C. Willens, S. Rubens, A. W. Simpson "Remote Authentication Dial
In User Service (RADIUS)" RFC 2865 DOI 10.17487/RFC2865 <https://
www.rfc-editor.org/info/rfc2865>

Eronen, P., Ed. H. Tschofenig, Ed. "Pre-Shared Key Ciphersuites for
Transport Layer Security (TLS)" RFC 4279 DOI 10.17487/RFC4279

<https://www.rfc-editor.org/info/rfc4279>

Winter, S. McCauley, M. Venaas, S. K. Wierenga "Transport Layer Security
(TLS) Encryption for RADIUS" RFC 6614 DOI 10.17487/RFC6614
<https://www.rfc-editor.org/info/rfc6614>

DeKok, A. "Datagram Transport Layer Security (DTLS) as a Transport Layer for
RADIUS" RFC 7360 DOI 10.17487/RFC7360 <https://www.rfc-
editor.org/info/rfc7360>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 18

https://rfc-editor.org/rfc/rfc8446#appendix-E.7
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc2865
https://www.rfc-editor.org/info/rfc4279
https://www.rfc-editor.org/info/rfc6614
https://www.rfc-editor.org/info/rfc7360
https://www.rfc-editor.org/info/rfc7360
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174

[RFC8265]

[RFC9257]

[RFC9325]

 and ,
, ,

, October 2017, .

, , , and ,
, , , July 2022,

.

, , and ,
,

, , , November 2022,
.

Saint-Andre, P. A. Melnikov "Preparation, Enforcement, and Comparison of
Internationalized Strings Representing Usernames and Passwords" RFC 8265
DOI 10.17487/RFC8265 <https://www.rfc-editor.org/info/rfc8265>

Housley, R. Hoyland, J. Sethi, M. C. A. Wood "Guidance for External Pre-
Shared Key (PSK) Usage in TLS" RFC 9257 DOI 10.17487/RFC9257
<https://www.rfc-editor.org/info/rfc9257>

Sheffer, Y. Saint-Andre, P. T. Fossati "Recommendations for Secure Use of
Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)"
BCP 195 RFC 9325 DOI 10.17487/RFC9325 <https://www.rfc-
editor.org/info/rfc9325>

[RFC5489]

[RFC6613]

[RFC7542]

[RFC7585]

[RFC8442]

[RFC8446]

[RFC8492]

[RFC8937]

[RFC9258]

10.2. Informative References

 and ,
, , , March 2009,

.

, , , , May 2012,
.

, , , ,
May 2015, .

 and ,
, ,

, October 2015, .

 and ,
, , , September

2018, .

, , ,
, August 2018, .

,
, , , February 2019,

.

, , , , and ,
, , , October

2020, .

 and ,
, , , July 2022,

.

Badra, M. I. Hajjeh "ECDHE_PSK Cipher Suites for Transport Layer Security
(TLS)" RFC 5489 DOI 10.17487/RFC5489 <https://www.rfc-
editor.org/info/rfc5489>

DeKok, A. "RADIUS over TCP" RFC 6613 DOI 10.17487/RFC6613
<https://www.rfc-editor.org/info/rfc6613>

DeKok, A. "The Network Access Identifier" RFC 7542 DOI 10.17487/RFC7542
<https://www.rfc-editor.org/info/rfc7542>

Winter, S. M. McCauley "Dynamic Peer Discovery for RADIUS/TLS and
RADIUS/DTLS Based on the Network Access Identifier (NAI)" RFC 7585 DOI
10.17487/RFC7585 <https://www.rfc-editor.org/info/rfc7585>

Mattsson, J. D. Migault "ECDHE_PSK with AES-GCM and AES-CCM Cipher
Suites for TLS 1.2 and DTLS 1.2" RFC 8442 DOI 10.17487/RFC8442

<https://www.rfc-editor.org/info/rfc8442>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Harkins, D., Ed. "Secure Password Ciphersuites for Transport Layer Security
(TLS)" RFC 8492 DOI 10.17487/RFC8492 <https://www.rfc-
editor.org/info/rfc8492>

Cremers, C. Garratt, L. Smyshlyaev, S. Sullivan, N. C. Wood "Randomness
Improvements for Security Protocols" RFC 8937 DOI 10.17487/RFC8937

<https://www.rfc-editor.org/info/rfc8937>

Benjamin, D. C. A. Wood "Importing External Pre-Shared Keys (PSKs) for
TLS 1.3" RFC 9258 DOI 10.17487/RFC9258 <https://www.rfc-
editor.org/info/rfc9258>

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 19

https://www.rfc-editor.org/info/rfc8265
https://www.rfc-editor.org/info/rfc9257
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc9325
https://www.rfc-editor.org/info/rfc5489
https://www.rfc-editor.org/info/rfc5489
https://www.rfc-editor.org/info/rfc6613
https://www.rfc-editor.org/info/rfc7542
https://www.rfc-editor.org/info/rfc7585
https://www.rfc-editor.org/info/rfc8442
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8492
https://www.rfc-editor.org/info/rfc8492
https://www.rfc-editor.org/info/rfc8937
https://www.rfc-editor.org/info/rfc9258
https://www.rfc-editor.org/info/rfc9258

Acknowledgments
Thanks to the many reviewers in the RADEXT Working Group for positive feedback.

Author's Address
Alan DeKok
InkBridge Networks

alan.dekok@inkbridge.ioEmail:

RFC 9813 RADIUS and TLS-PSK July 2025

DeKok Best Current Practice Page 20

mailto:alan.dekok@inkbridge.io

	RFC 9813
	Operational Considerations for Using TLS Pre-Shared Keys (TLS-PSKs) with RADIUS
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	2. Terminology
	3. Justification of PSK
	4. General Discussion of PSKs and PSK Identities
	4.1. Guidance for PSKs
	4.1.1. PSK Requirements
	4.1.2. Usability Guidance
	4.1.3. Interaction Between PSKs and RADIUS Shared Secrets

	4.2. PSK Identities
	4.2.1. Security of PSK Identities

	4.3. PSK and PSK Identity Sharing
	4.4. PSK Lifetimes

	5. Guidance for RADIUS Clients
	5.1. PSK Identities
	5.1.1. PSK Identity Requirements
	5.1.2. Usability Guidance

	6. Guidance for RADIUS Servers
	6.1. Current Practices
	6.2. Practices for TLS-PSK
	6.2.1. IP Filtering
	6.2.2. PSK Authentication
	6.2.3. Resumption
	6.2.4. Interaction with Other TLS Authentication Methods

	7. Privacy Considerations
	8. Security Considerations
	9. IANA Considerations
	10. References
	10.1. Normative References
	10.2. Informative References

	Acknowledgments
	Author's Address

 Operational Considerations for Using TLS Pre-Shared Keys (TLS-PSKs) with RADIUS

 InkBridge Networks

 alan.dekok@inkbridge.io

 SEC
 radext
 example

 This document provides implementation and operational considerations
 for using TLS Pre-Shared Keys (TLS-PSKs) with RADIUS/TLS (RFC 6614) and RADIUS/DTLS (RFC 7360).
 The purpose of the document is to help smooth the operational transition
 from the use of RADIUS/UDP to RADIUS/TLS.

 Status of This Memo

 This memo documents an Internet Best Current Practice.

 This document is a product of the Internet Engineering Task Force
 (IETF). It represents the consensus of the IETF community. It has
 received public review and has been approved for publication by
 the Internet Engineering Steering Group (IESG). Further information
 on BCPs is available in Section 2 of RFC 7841.

 Information about the current status of this document, any
 errata, and how to provide feedback on it may be obtained at
 .

 Copyright Notice

 Copyright (c) 2025 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust's Legal
 Provisions Relating to IETF Documents
 () in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with
 respect to this document. Code Components extracted from this
 document must include Revised BSD License text as described in
 Section 4.e of the Trust Legal Provisions and are provided without
 warranty as described in the Revised BSD License.

 Table of Contents

 . Introduction

 . Terminology

 . Justification of PSK

 . General Discussion of PSKs and PSK Identities

 . Guidance for PSKs

 . PSK Requirements

 . Usability Guidance

 . Interaction Between PSKs and RADIUS Shared Secrets

 . PSK Identities

 . Security of PSK Identities

 . PSK and PSK Identity Sharing

 . PSK Lifetimes

 . Guidance for RADIUS Clients

 . PSK Identities

 . PSK Identity Requirements

 . Usability Guidance

 . Guidance for RADIUS Servers

 . Current Practices

 . Practices for TLS-PSK

 . IP Filtering

 . PSK Authentication

 . Resumption

 . Interaction with Other TLS Authentication Methods

 . Privacy Considerations

 . Security Considerations

 . IANA Considerations

 . References

 . Normative References

 . Informative References

 Acknowledgments

 Author's Address

 Introduction
 The previous specifications "Transport Layer Security (TLS)
 Encryption for RADIUS" and "Datagram Transport
 Layer Security (DTLS) as a Transport Layer for RADIUS" defined how (D)TLS can be used as a transport
 protocol for RADIUS. However, those documents do not provide guidance
 for using TLS Pre-Shared Keys (TLS-PSKs) with RADIUS. This document provides that missing
 guidance, and gives implementation and operational considerations.
 To clearly distinguish the various secrets and keys, this document
 uses "shared secret" to mean "RADIUS shared secret", and "Pre-Shared Key
 (PSK)" to mean "secret keys that are used with TLS-PSK".
 The purpose of the document is to help smooth the operational
 transition from the use of the insecure RADIUS/UDP to the use of the
 much more secure RADIUS/TLS. While using PSKs is often less preferable
 to using public or private keys, the operational model of PSKs follows
 the legacy RADIUS "shared secret" model. As such, it can be easier for
 implementers and operators to transition to TLS when that transition is
 offered as a series of small changes.
 TLS-PSK is intended to be used in networks where the
 addresses of clients and servers are known, as with RADIUS/UDP. This
 situation is similar to the use case of RADIUS/UDP with shared secrets.
 TLS-PSK is not suitable for situations where clients dynamically
 discover servers, as there is no way for the client to dynamically
 determine which PSK should be used with a new server (or vice versa).
 In contrast, dynamic discovery allows for
 a client or server to authenticate a previously unknown server or client,
 as the parties can be issued a certificate by a known Certification
 Authority (CA).
 TLS-PSKs have the same issue of symmetric information between client
 and server: both parties know the secret key. A client could, in
 theory, pretend to be a server. In contrast, certificates are
 asymmetric, where it is impossible for the parties to assume the other's
 identity. Further discussion of this topic is contained in .
 Unless it is explicitly called out that a recommendation applies to
 TLS or DTLS alone, each recommendation applies to both TLS and
 DTLS.

 Terminology

 The key words " MUST", " MUST NOT",
 " REQUIRED", " SHALL", " SHALL NOT",
 " SHOULD", " SHOULD NOT",
 " RECOMMENDED", " NOT RECOMMENDED",
 " MAY", and " OPTIONAL" in this document are to be
 interpreted as described in BCP 14 when, and only when, they appear in all capitals, as
 shown here.

 External PSK
 A PSK (along with a related PSK Identity)
 that is administratively configured. That is, one that is
 external to TLS and is not created by the TLS subsystem.
 Resumption PSK
 A PSK (along with a related PSK Identity)
 that is created by the TLS subsystem and/or application, for use
 with resumption.

 Justification of PSK
 TLS deployments usually rely on certificates in most common
 uses. However, we recognize that it may be difficult to fully upgrade
 client implementations to allow for certificates to be used with
 RADIUS/TLS and RADIUS/DTLS. These upgrades involve not only
 implementing TLS, but can also require significant changes to
 administration interfaces and application programming interfaces (APIs)
 in order to fully support certificates.
 For example, unlike shared secrets, certificates expire. This
 expiration means that a working system using TLS can suddenly stop
 working. Managing this expiration can require additional notification
 APIs on RADIUS clients and servers that were previously not required
 when shared secrets were used.
 Certificates also require the use of certification authorities (CAs)
 and chains of certificates. RADIUS implementations using TLS therefore
 have to track not just a small shared secret, but also potentially many
 large certificates. The use of TLS-PSK can therefore provide a simpler
 upgrade path for implementations to transition from RADIUS shared
 secrets to TLS.
 In terms of ongoing maintenance, it is generally simpler to maintain
 servers than clients. For one, there are many fewer servers than
 clients. Servers are also typically less resource constrained, and
 often run on general-purpose operating systems, where maintenance can be
 automated using widely available tools.
 In contrast, clients are often numerous, resource constrained, and
 likely to be closed or proprietary systems with limited interfaces. As
 a result, it can be difficult to update these clients when a root CA
 expires. The use of TLS-PSK in such an environment may therefore offer
 management efficiencies.

 General Discussion of PSKs and PSK Identities
 Before we define any RADIUS-specific use of PSKs, we must first
 review the current standards for PSKs, and give general advice on PSKs
 and PSK Identities.
 The requirements in this section apply to both client and server
 implementations that use TLS-PSK. Client-specific and server-specific
 issues are discussed in more detail later in this document.

 Guidance for PSKs
 We first give requirements for creating and managing PSKs, followed
 by usability guidance, and then a discussion of RADIUS shared secrets
 and their interaction with PSKs.

 PSK Requirements
 Reuse of a PSK in multiple versions of TLS (e.g., TLS 1.2 and TLS
 1.3) is considered unsafe (see). Where TLS 1.3 binds the PSK to a particular
 key derivation function (KDF), TLS 1.2 does not. This binding means that
 it is possible to use the same PSK in different hashes, leading to
 the potential for attacking the PSK by comparing the hash outputs.
 While there are no known insecurities, these uses are not known to
 be secure, and should therefore be avoided. For this reason, an
 implementation MUST NOT use the same PSK for TLS 1.3
 and for earlier versions of TLS. The exact manner in which this
 requirement is enforced is implementation-specific. One possibility
 is to have two different PSKs. Another possibility is to forbid the
 use of TLS versions less than TLS 1.3
 adds a KDF to the import interface of
 (D)TLS 1.3, which binds the externally provided PSK to the protocol
 version. That process is preferred to any trust-on-first-use (TOFU) mechanism. In
 particular, that document:

 ... describes a mechanism for importing PSKs derived from
 external PSKs by including the target KDF, (D)TLS protocol
 version, and an optional context string to ensure
 uniqueness. This process yields a set of candidate PSKs, each of
 which are bound to a target KDF and protocol, that are separate
 from those used in (D)TLS 1.2 and prior versions. This expands
 what would normally have been a single PSK and identity into a
 set of PSKs and identities.

 An implementation MUST NOT use the same PSK for
 TLS 1.3 and for earlier versions of TLS. This requirement prevents
 reuse of a PSK with multiple TLS versions, which prevents the
 attacks discussed in . The exact manner in which this requirement is
 enforced is implementation-specific. One possibility is to have two
 different PSKs. Another possibility is to forbid the use of TLS
 versions less than TLS 1.3.
 Implementations MUST follow the directions of
 for the
 use of external PSKs in TLS. That document provides extremely
 useful guidance on generating and using PSKs.
 Implementations MUST support PSKs of at least 32
 octets in length, and SHOULD support PSKs of 64
 octets or more. As the PSKs are generally hashed before being used
 in TLS, the useful entropy of a PSK is limited by the size of the
 hash output. This output may be 256, 384, or 512 bits in length.
 Nevertheless, it is good practice for implementations to allow entry
 of PSKs of more than 64 octets, as the PSK may be in a form other
 than bare binary data. Implementations that limit the PSK to a
 maximum of 64 octets are likely to use PSKs that have much less
 than 512 bits of entropy. That is, a PSK with high entropy may be
 expanded via some construct (e.g., base32 as seen in)
 in order to make it easier for people to interact with. Where 512
 bits of entropy are input to an encoding construct, the output may
 be larger than 64 octets.
 Implementations MUST require that PSKs be at least
 16 octets in length. That is, short PSKs MUST NOT be
 permitted to be used, and PSKs MUST be random. The
 strength of the PSK is not determined by the length of the PSK, but
 instead by the number of bits of entropy that it contains. People
 are not good at creating data with high entropy, so a source of
 cryptographically secure random numbers MUST be
 used.
 Where user passwords are generally intended to be remembered and
 entered by people on a regular basis, PSKs are intended to be
 entered once, and then automatically saved in a system
 configuration. As such, due to the limited entropy of passwords,
 they are not acceptable for use with TLS-PSK, and would only be
 acceptable for use with a password-authenticated key exchange (PAKE)
 TLS method . Implementations
 MUST therefore support entry and storage of PSKs as
 undistinguished octets.
 We also incorporate by reference the requirements of when using
 PSKs.
 It may be tempting for servers to implement a TOFU policy with
 respect to clients. Such behavior is NOT RECOMMENDED. When servers receive a connection from an
 unknown client, they SHOULD log the PSK Identity,
 source IP address, and any other information that may be relevant.
 An administrator can then later look at the logs and determine the
 appropriate action to take.

 Usability Guidance
 PSKs in their purest form are opaque tokens, represented as
 an undistinguished series of octets. Where PSKs are expected to be
 managed automatically by scripted methods, this format is
 acceptable. However, in some cases it is necessary for
 administrators to share PSKs, in which case human-readable formats
 may be useful. Implementations SHOULD support
 entering PSKs as both binary data and via a human-readable form
 such as hex encoding.
 Implementations SHOULD use a human-readable form
 of PSKs for interfaces that are intended to be used by people, and
 SHOULD allow for binary data to be entered via an
 application programming interface (API). Implementations
 SHOULD also allow for PSKs to be displayed in the hex
 encoding mentioned above, so that administrators can manually verify
 that a particular PSK is being used.
 When using PSKs, administrators SHOULD use PSKs of
 at least 24 octets that are generated using a source of cryptographically
 secure random numbers. Implementers needing a secure random number
 generator should see for further
 guidance. PSKs are not passwords, and administrators should not try
 to manually create PSKs.
 In order to guide implementers and administrators, we give
 example commands below that generate random PSKs from a locally
 secure source. While some commands may not work on some systems, one
 of the commands should succeed. The intent here is to document a
 concise and simple example of creating PSKs that are both secure
 and human-manageable. This document does not mandate that the
 PSKs follow this format or any other format.

openssl rand -base64 16

dd if=/dev/urandom bs=1 count=16 | base64

dd if=/dev/urandom bs=1 count=16 | base32

dd if=/dev/urandom bs=1 count=16 | (hexdump -ve '/1 "%02x"' && echo)

 Only one of the above commands should be run; there is no need to
 run all of them. Each command reads 128 bits (16 octets) of random
 data from a secure source, and encodes it as printable and readable
 ASCII. This form of PSK will be accepted by any implementation
 that supports at least 32 octets for PSKs. Larger PSKs can be
 generated by changing the "16" number to a larger value. The above
 derivation assumes that the random source returns one bit of entropy
 for every bit of randomness that is returned. Sources failing that
 assumption are NOT RECOMMENDED.

 Interaction Between PSKs and RADIUS Shared Secrets
 Any shared secret used for RADIUS/UDP or RADIUS/TLS MUST NOT be used for TLS-PSK.
 It is RECOMMENDED that RADIUS clients and servers
 track all used shared secrets and PSKs, and then verify that the
 following requirements all hold true:

 no shared secret is used for more than one RADIUS client

 no PSK is used for more than one RADIUS client

 no shared secret is used as a PSK

 Note that the shared secret of "radsec" given in can be used across multiple clients, as that
 value is mandated by the specification. The intention here is to
 recommend best practices for administrators who enter site-local
 shared secrets.
 There may be use cases for using one shared secret across
 multiple RADIUS clients. There may similarly be use cases for
 sharing a PSK across multiple RADIUS clients. Details of the
 possible attacks on reused PSKs are given in .
 There are no known use cases for using a PSK as a shared secret,
 or vice versa.
 Implementations MUST reject configuration attempts
 that try to use the same value for the PSK and shared secret. To
 prevent administrative errors, implementations should not have
 interfaces that confuse PSKs and shared secrets or that allow
 both PSKs and shared secrets to be entered at the same time. There
 is too much of a temptation for administrators to enter the same
 value in both fields, which would violate the limitations given
 above. Similarly, using a "shared secret" field as a way for
 administrators to enter PSKs is bad practice. The PSK entry fields
 need to be labeled as being related to PSKs, and not to shared
 secrets.

 PSK Identities

 requires that PSK Identities be encoded in UTF-8 format. However,

 describes the "Pre-Shared Key Extension" and defines the ticket as an
 opaque string: "opaque identity<1..2 16-1>;". This PSK is then
 used in
 for resumption.
 These definitions appear to be in conflict. This conflict is
 addressed in , which discusses requirements for encoding and
 comparison of PSK Identities. Systems MUST follow the
 directions of when using or comparing PSK Identities for
 RADIUS/TLS. Implementations MUST follow the
 recommendations of for handling PSK Identity
 strings.
 In general, implementers should allow for external PSK Identities
 to follow and be UTF-8, while PSK Identities
 provisioned as part of resumption are automatically provisioned, and
 therefore follow .
 Note that the PSK Identity is sent in the clear, and is therefore
 visible to attackers. Where privacy is desired, the PSK Identity
 could be either an opaque token generated cryptographically, or
 perhaps in the form of a Network Access Identifier (NAI) , where the "user" portion is an opaque token. For
 example, an NAI could be "68092112@example.com". If the attacker
 already knows that the client is associated with "example.com", then
 using that domain name in the PSK Identity offers no additional
 information. In contrast, the "user" portion needs to be both unique
 to the client and private, so using an opaque token is a more
 secure approach.
 Implementations MUST support PSK Identities of 128
 octets, and SHOULD support longer PSK Identities. We
 note that while TLS provides for PSK Identities of up to 2 16-1 octets
 in length, there are few practical uses for extremely long PSK
 Identities.
 It is up to administrators and implementations as to how they
 differentiate external PSK Identities from session resumption PSK
 Identities used in TLS 1.3 session tickets. While suggests the
 identities should be unique, it offers no concrete steps for how this
 differentiation may be done.
 One approach could be to have externally provisioned PSK Identities
 contain an NAI such as what is described above, while session resumption PSK
 Identities contain large blobs of opaque, encrypted, and authenticated
 text. It should then be relatively straightforward to differentiate
 the two types of identities. One is UTF-8, the other is not. One is
 unauthenticated, the other is authenticated.
 Servers MUST assign and/or track session resumption
 PSK Identities in a way that facilities the ability to distinguish
 those identities from externally configured PSK Identities, and that
 enables them to both find and validate the session resumption PSK.
 See below for more discussion of issues around
 resumption.
 A sample validation flow for TLS-PSK Identities could be performed
 via the following steps:

 PSK Identities provided via an administration interface are
 enforced to be only UTF-8 on both client and server.
 The client treats session tickets received from the server as
 opaque blobs.
 When the server issues session tickets for resumption, the
 server ensures that they are not valid UTF-8.
 One way to do this is to use stateless resumption with a forced
 non-UTF-8 key_name per , such as by setting one octet to 0x00.

 When receiving TLS, the server receives a Client-Hello containing
	 a PSK, and checks if the identity is valid UTF-8:

 If yes, it searches for a preconfigured client that matches that identity.

 If the identity is found, it authenticates the client via PSK.
 Else, the identity is invalid, and the server closes the connection.

 If not, try resumption, which is usually handled by a TLS library.

 If the TLS library verifies the session ticket, then resumption has happened, and the connection is established.
 Else, the server ignores the session ticket, and performs a normal TLS handshake with a certificate.

 This validation flow is only suggested. Other validation methods are possible.

 Security of PSK Identities
 We note that the PSK Identity is a field created by the
 connecting client. Since the client is untrusted until both the
 identity and PSK have been verified, both of those fields
 MUST be treated as untrusted. That is, a well-formed
 PSK Identity is likely to be in UTF-8 format, due to the
 requirements of . However, implementations MUST
 support managing PSK Identities as a set of undistinguished
 octets.
 It is not safe to use a raw PSK Identity to look up a
 corresponding PSK. The PSK may come from an untrusted source and
 may contain invalid or malicious data. For example, the identity
 may:

 have an incorrect UTF-8 format,
 contain data that forms an injection attack for SQL, the
	 Lightweight Directory Access Protocol (LDAP), Representational
	 State Transfer (REST), or shell meta characters, or
 contain embedded NUL octets that are incompatible with APIs
	 that expect NUL terminated strings.

 The identity may also be up to 65535 octets long.
 As such, implementations MUST validate the
 identity prior to it being used as a lookup key. When the identity
 is passed to an external API (e.g., database lookup),
 implementations MUST either escape any characters in
 the identity that are invalid for that API, or else reject the
 identity entirely. The exact form of any escaping depends on the
 API, and we cannot document all possible methods here. However, a
 few basic validation rules are suggested, as outlined below. Any
 identity that is rejected by these validation rules
 MUST cause the server to close the TLS
 connection.
 The suggested validation rules for identities used outside of resumption are as follows:

 Identities MUST be checked to see if they have
 been provisioned as a resumption PSK. If so, then the session
 can be resumed, subject to any policies around resumption.

 Identities longer than a fixed maximum SHOULD
 be rejected. The limit is implementation dependent, but
 SHOULD NOT be less than 128, and SHOULD NOT be more than 1024. There is no purpose to allowing
 extremely long identities, and allowing them does little more
 than complicate implementations.

 Identities configured by administrators SHOULD
 be in UTF-8 format, and SHOULD be in the NAI
 format from . While
 defines the PSK Identity as "opaque identity<1..2 16-1>",
 it is useful for administrators to manage human-readable
 identities in a recognizable format.
 This suggestion makes it easier to distinguish TLS-PSK
	 Identities from TLS 1.3 resumption identities. It also allows
	 implementations to more easily filter out unexpected or bad
	 identities, and then to close inappropriate TLS connections.

 It is RECOMMENDED that implementations extend
 these rules with any additional validation that is found to be
 useful. For example, implementations and/or deployments could both
 generate PSK Identities in a particular format for passing to client
 systems, and then also verify that any received identity matches
 that format. For example, a site could generate PSK Identities
 that are composed of characters in the local language. The site
 could then reject identities that contain characters from other
 languages, even if those characters are valid UTF-8.
 The purpose of these rules is to help administrators and
 implementers more easily manage systems using TLS-PSK, while also
 minimizing complexity and protecting from potential attackers'
 traffic. The rules follow a principle of "discard bad traffic
 quickly", which helps to improve system stability and
 performance.

 PSK and PSK Identity Sharing
 While administrators may desire to share PSKs and/or PSK Identities
 across multiple systems, such usage is NOT RECOMMENDED.
 Details of the possible attacks on reused PSKs are given in .
 Implementations MUST support the ability to
 configure a unique PSK and PSK Identity for each possible
 client-server relationship. This configuration allows administrators
 desiring security to use unique PSKs for each such relationship. This
 configuration is also compatible with the practice of administrators
 who wish to reuse PSKs and PSK Identities where local policies
 permit.
 Implementations SHOULD warn administrators if the
 same PSK Identity and/or PSK is used for multiple client-server
 relationships.

 PSK Lifetimes
 Unfortunately, offers no guidance on PSK
 lifetimes other than to note in Section that:

 Forward security may be achieved by using a PSK-DH mode or by
 using PSKs with short lifetimes.

 It is RECOMMENDED that PSKs be rotated regularly.
 We offer no additional guidance on how often this process should
 occur. Changing PSKs has a non-zero cost. It is therefore up to
 administrators to determine how best to balance the cost of changing
 the PSK against the cost of a potential PSK compromise.
 TLS-PSK MUST use modes such as PSK-DH or ECDHE_PSK
 that provide forward secrecy. Failure to
 use such modes would mean that compromise of a PSK would allow an
 attacker to decrypt all sessions that had used that PSK.
 As the PSKs are looked up by identity, the PSK Identity
 MUST also be changed when the PSK changes.
 Servers SHOULD track when a connection was last
 received for a particular PSK Identity, and SHOULD
 automatically invalidate credentials when a client has not connected
 for an extended period of time. This process helps to mitigate the
 issue of credentials being leaked when a device is stolen or
 discarded.

 Guidance for RADIUS Clients
 Client implementations MUST allow the use of a
 Pre-Shared Key (PSK) for RADIUS/TLS. The client implementation can then
 provide a user interface flag that is "TLS yes / no", and also provide
 fields that ask for the PSK Identity and PSK itself.
 For TLS 1.3, implementations MUST support the "psk_dhe_ke" PSK Exchange Mode as discussed in and in . Implementations MUST implement the
 recommended cipher suites in for TLS 1.2 and in for TLS 1.3. In
 order to future-proof these recommendations, we give the following
 recommendations.

 Implementations SHOULD use the "Recommended"
	 cipher suites listed in the IANA "TLS Cipher Suites" registry:

 For TLS 1.3, use the "psk_dhe_ke" PSK key exchange mode.

 For TLS 1.2 and earlier, use cipher suites that require ephemeral keying.

 If a client initiated a connection using a PSK with TLS 1.3 by
 including the PSK extension, it MUST close the
 connection if the server did not also select the PSK to
 continue the handshake.

 PSK Identities
 This section offers advice on both requirements for PSK Identities and on usability.

 PSK Identity Requirements
 is silent on the subject of PSK
 Identities, which is an issue that we correct here. Guidance is
 required on the use of PSK Identities, as the need to manage
 identities associated with PSKs is a new requirement for both Network Access Server (NAS)
 management interfaces and RADIUS
 servers.
 RADIUS systems implementing TLS-PSK MUST support
 identities as per and MUST enable configuring
 TLS-PSK Identities in management interfaces as per .
 The historic methods of signing RADIUS packets have not yet been
 broken, but they are believed to be much less secure than modern
 TLS. Therefore, when a RADIUS shared secret is used to sign
 RADIUS/UDP or RADIUS/TCP packets, that shared secret MUST NOT be used with TLS-PSK. If the secrets were to be reused,
 then an attack on historic RADIUS cryptography could be trivially
 leveraged to decrypt TLS-PSK sessions.
 With TLS-PSK, RADIUS/TLS clients MUST permit the
 configuration of a RADIUS server IP address or host name, because
 dynamic server lookups can only be used if
 servers use certificates.

 Usability Guidance
 In order to prevent confusion between shared secrets and
 TLS-PSKs, management interfaces and APIs need to label PSK fields as
 "PSK" or "TLS-PSK", rather than as "shared secret".

 Guidance for RADIUS Servers
 In order to support clients with TLS-PSK, server implementations
 MUST allow the use of a PSK (TLS-PSK) for
 RADIUS/TLS.
 Systems that act as both client and server at the same time
 MUST NOT share or reuse PSK Identities between incoming
 and outgoing connections. Doing so would open up the systems to attack,
 as discussed in .
 For TLS 1.3, implementations MUST support the "psk_dhe_ke"
 PSK Exchange Mode as discussed in and in . Implementations
 MUST implement the recommended cipher suites in for TLS 1.2 and
 in for TLS
 1.3. In order to future-proof these recommendations, we give the
 following recommendations.

 Implementations SHOULD use the "Recommended"
 cipher suites listed in the IANA "TLS Cipher Suites" registry:

 For TLS 1.3, use the "psk_dhe_ke" PSK key exchange mode.

 For TLS 1.2 and earlier, use cipher suites that require ephemeral keying.

 The following section(s) describe guidance for RADIUS server
 implementations and deployments. We first give an overview of current
 practices, and then extend and/or replace those practices for
 TLS-PSK.

 Current Practices
 RADIUS identifies clients by source IP address (see and) or by client
 certificate (see and).
 Neither of these approaches work for TLS-PSK. This section describes
 current practices and mandates behavior for servers that use
 TLS-PSK.
 A RADIUS/UDP server is typically configured with a set of
 information per client, which includes at least the source IP address
 and shared secret. When the server receives a RADIUS/UDP packet, it
 looks up the source IP address, finds a client definition, and
 therefore the shared secret. The packet is then authenticated (or
 not) using that shared secret.
 That is, the IP address is treated as the client's identity, and the
 shared secret is used to prove the client's authenticity and shared
 trust. The set of clients forms a logical database "client table"
 with the IP address as the key.
 A server may be configured with additional site-local policies
 associated with that client. For example, a client may be marked up
 as being a Wi-Fi Access Point, a VPN concentrator, etc. Different
 clients may be permitted to send different kinds of requests, where
 some may send Accounting-Request packets, and other clients may not
 send accounting packets.

 Practices for TLS-PSK
 We define practices for TLS-PSK by analogy with the RADIUS/UDP
 use case and by extending the additional policies associated with the
 client. The PSK Identity replaces the source IP address as the client
 identifier. The PSK replaces the shared secret as proof of client
 authenticity and shared trust. However, systems implementing
 RADIUS/TLS and RADIUS/DTLS MUST still use the shared secret as
 discussed in those specifications. Any PSK is only used by the TLS
 layer and has no effect on the RADIUS data that is being
 transported. That is, the RADIUS data transported in a TLS tunnel is
 the same no matter if client authentication is done via PSK or by
 client certificates. The encoding of the RADIUS data is entirely
 unaffected by the use (or not) of PSKs and client certificates.
 In order to securely support dynamic source IP addresses for
 clients, we also require that servers limit clients based on a network
 range. The alternative would be to suggest that RADIUS servers allow
 any source IP address to connect and try TLS-PSK, which could be a
 security risk. When RADIUS servers do no source IP address filtering,
 it is easier for attackers to send malicious traffic to the server.
 An issue with a TLS library or even a TCP/IP stack could permit the
 attacker to gain unwarranted access. In contrast, when IP address
 filtering is done, attackers generally must first gain access to a
 secure network before attacking the RADIUS server.
 Even where dynamic discovery is not used,
 the use of TLS-PSK across unrelated organizations requires that those
 organizations share PSKs. Such sharing makes it easier for a client
 to impersonate a server, and vice versa. In contrast, when
 certificates are used, such impersonations are impossible. It is
 therefore NOT RECOMMENDED to use TLS-PSK across
 organizational boundaries.
 When TLS-PSK is used in an environment where both client and server
 are part of the same organization, then impersonations only affect
 that organization. As TLS offers significant advantages over
 RADIUS/UDP, it is RECOMMENDED that organizations use
 RADIUS/TLS with TLS-PSK to replace RADIUS/UDP for all systems managed
 within the same organization. While such systems are generally
 located inside of private networks, there are no known security issues
 with using TLS-PSK for RADIUS/TLS connections across the public
 Internet.
 If a client system is compromised, its complete configuration is
 exposed to the attacker. Exposing a client certificate means that the
 attacker can pretend to be the client. In contrast, exposing a PSK
 means that the attacker cannot only pretend to be the client, but can
 also pretend to be the server.
 The main benefit of TLS-PSK, therefore, is that its operational
 processes are similar to that used for managing RADIUS/UDP, while
 gaining the increased security of TLS. However, it is still
 beneficial for servers to perform IP address filtering, in order to
 further limit their exposure to attacks.

 IP Filtering
 A server supporting this specification MUST
 perform IP address filtering on incoming connections. There are few
 reasons for a server to have a default configuration that allows
 connections from any source IP address.
 A TLS-PSK server MUST be configurable with a set
 of "allowed" network ranges from which clients are permitted to
 connect. Any connection from outside of the allowed range(s)
 MUST be rejected before any PSK Identity is checked.
 It is RECOMMENDED that servers support IP address
 filtering even when TLS-PSK is not used.
 The "allowed" network ranges could be implemented as a global
 list, or one or more network ranges could be tied to a client or
 clients. The intent here is to allow connections to be filtered by
 source IP address and to allow clients to be limited to a subset of
 network addresses. The exact method and representation of that
 filtering is up to an implementation.
 Conceptually, the set of IP addresses and ranges, along with
 permitted clients and their credentials, form a logical "client
 table" that the server uses to both filter and authenticate
 clients. The client table should contain information such as
 allowed network ranges, PSK Identity and associated PSK, credentials
 for another TLS authentication method, or flags that indicate that
 the server should require a client certificate.
 Once a server receives a connection, it checks the source IP
 address against the list of all allowed IP addresses or ranges in
 the client table. If none match, the connection MUST
 be rejected. That is, the connection MUST be from an
 authorized source IP address.
 Once a connection has been established, the server MUST NOT process any application data inside of the TLS tunnel
 until the client has been authenticated. Instead, the server
 normally receives a TLS-PSK Identity from the client. The server
 then uses this identity to look up the client in the client table.
 If there is no matching client, the server MUST close
 the connection. The server then also checks if this client
 definition allows this particular source IP address. If the source
 IP address is not allowed, the server MUST close the
 connection.
 Where the server does not receive TLS-PSK from the client, it
 proceeds with another authentication method such as client
 certificates. Such requirements are discussed elsewhere, most
 notably in and .
 An implementation may perform two independent IP address lookups:
 first to check if the connection is allowed at all, and second to
 check if the connection is authorized for this particular client.
 One or both checks may be used by a particular implementation. The
 two sets of IP addresses can overlap, and implementations
 SHOULD support that capability.
 Depending on the implementation, one or more clients may share a
 list of allowed network ranges. Alternately, the allowed network
 ranges for two clients can overlap only partially, or not at all.
 All of these possibilities MUST be supported by the
 server implementation.
 For example, a RADIUS server could be configured to accept
 connections from a source network of 192.0.2.0/24 or 2001:DB8::/32.
 The server could therefore discard any TLS connection request that
 comes from a source IP address outside of that network. In that
 case, there is no need to examine the PSK Identity or to find the
 client definition. Instead, the IP source filtering policy would
 deny the connection before any TLS communication had been
 performed.
 As some clients may have dynamic IP addresses, it is possible for
 one PSK Identity to appear at different source IP addresses over
 time. In addition, as there may be many clients behind one NAT
 gateway, there may be multiple RADIUS clients using one public IP
 address. RADIUS servers MUST support multiple PSK
 Identifiers at one source IP address.
 That is, a server needs to support multiple different clients
 within one network range, multiple clients behind a NAT, and one
 client having different IP addresses over time. All of those
 use cases are common and necessary.
 The following section describes these requirements in more detail.

 PSK Authentication
 Once the source IP address has been verified to be allowed for
 this particular client, the server authenticates the TLS connection
 via the PSK taken from the client definition. If the PSK is
 verified, the server then accepts the connection and proceeds with
 RADIUS/TLS as per .
 If the PSK is not verified, then the server MUST
 close the connection. While TLS provides for fallback to other
 authentication methods such as client certificates, there is no
 reason for a client to be configured simultaneously with multiple
 authentication methods.
 A client MUST use only one authentication method
 for TLS. An authentication method is either TLS-PSK, client
 certificates, or some other method supported by TLS.
 That is, client configuration is relatively simple: use a
 particular set of credentials to authenticate to a particular
 server. While clients may support multiple servers and fail-over or
 load-balancing, that configuration is generally orthogonal to the
 choice of which credentials to use.

 Resumption
 It is NOT RECOMMENDED that servers enable
 resumption for sessions that use TLS-PSK. There are few practical
 benefits to supporting resumption and many complexities.
 However, some systems will need to support both TLS-PSK and
 other TLS-based authentication methods such as certificates, while
 also supporting session resumption. It is therefore vital for
 servers to be able to distinguish the use case of TLS-PSK with
 preconfigured identities from TLS-PSK that is being used for
 resumptions.
 The above discussion of PSK Identities is complicated by the use
 of PSKs for resumption in TLS 1.3. A server that receives a PSK
 Identity via TLS typically cannot query the TLS layer to see if this
 identity is for a resumed session (which is possibly for another TLS
 authentication method), or is instead a static pre-provisioned
 identity. This confusion complicates server implementations.
 One way for a server to tell the difference between the two kinds
 of identities is via construction. Identities used for resumption
 can be constructed via a fixed format, such as what is recommended by . A static
 pre-provisioned identity could be in the format of an NAI, as given in
 . An implementation could therefore examine
 the incoming identity and determine from the identity alone what
 kind of authentication was being performed.
 An alternative way for a server to distinguish the two kinds of
 identities is to maintain two tables. One table would contain
 static identities, as the logical client table described above.
 Another table could be the table of identities handed out for
 resumption. The server would then look up any PSK Identity in one
 table, and if it is not found, query the other one. Either an identity would be
 found in a table, in which case it can be authenticated, or the
 identity would not be found in either table, in which case it is
 unknown, and the server MUST close the
 connection.
 As suggested in , TLS-PSK peers
 MUST NOT store resumption PSKs or tickets (and
 associated cached data) for longer than 604800 seconds (7 days),
 regardless of the PSK or ticket lifetime.
 Since resumption in TLS 1.3 uses PSK Identities and keys, it is
 NOT RECOMMENDED to permit resumption of sessions when
 TLS-PSK is used. The use of resumption offers additional complexity
 with minimal additional benefits.
 Where resumption is allowed with TLS-PSK, systems
 MUST cache data during the initial full handshake
 sufficiently enough to allow authorization decisions to be made during
 resumption. If the cached data cannot be retrieved securely,
 resumption MUST NOT be done. Instead, the system
 MUST perform a full handshake.
 The data that needs to be cached is typically information such
 as the original PSK Identity, along with any policies associated
 with that identity.
 Information from the original TLS exchange (e.g., the original
 PSK Identity) as well as related information (e.g., source IP
 addresses) may change between the initial full handshake and
 resumption. This change creates a "time-of-check time-of-use"
 (TOCTOU) security vulnerability. A malicious or compromised client
 could supply one set of data during the initial authentication and
 a different set of data during resumption, potentially allowing them
 to obtain access that they should not have.
 If any authorization or policy decisions were made with
 information that has changed between the initial full handshake and
 resumption, and if changes may lead to a different decision, such
 decisions MUST be reevaluated. Systems
 MUST also reevaluate authorization and policy
 decisions during resumption, based on the information given in the
 new connection. Servers MAY refuse to perform
 resumption where the information supplied during resumption does not
 match the information supplied during the original authentication.
 If a safe decision is not possible, servers MUST
 instead continue with a full handshake.

 Interaction with Other TLS Authentication Methods
 When a server supports both TLS-PSK and client certificates, it
 MUST be able to accept authenticated connections from
 clients that may use either type of credentials, perhaps even from
 the same source IP address and at the same time. That is, servers
 are required to both authenticate the client and also to filter
 clients by source IP address. These checks both have to match in
 order for a client to be accepted.

 Privacy Considerations
 We make no changes to and .

 Security Considerations
 The primary focus of this document is addressing security considerations for RADIUS.
 Previous specifications discuss security considerations for TLS-PSK
 in detail. We refer the reader to , , and
 . Those documents are newer than and , and therefore raise
 issues that were not considered during the initial design of RADIUS/TLS
 and RADIUS/DTLS.
 Using TLS-PSK across the wider Internet for RADIUS can have different
 security considerations than for other protocols. For example, if
 TLS-PSK was for client/server communication with HTTPS, then having a
 PSK be exposed or broken could affect one user's traffic. In contrast,
 RADIUS contains credentials and personally identifiable information
 (PII) for many users. As a result, an attacker being able to see inside
 of a TLS-PSK connection for RADIUS would result in substantial amounts
 of PII being leaked, possibly including passwords.
 When modes providing forward secrecy are used (e.g., ECDHE_PSK as seen in and), such attacks are
 limited to future sessions, and historical sessions are still
 secure.

 IANA Considerations
 This document has no IANA actions.

 References

 Normative References

 Key words for use in RFCs to Indicate Requirement Levels

 In many standards track documents several words are used to signify the requirements in the specification. These words are often capitalized. This document defines these words as they should be interpreted in IETF documents. This document specifies an Internet Best Current Practices for the Internet Community, and requests discussion and suggestions for improvements.

 Remote Authentication Dial In User Service (RADIUS)

 This document describes a protocol for carrying authentication, authorization, and configuration information between a Network Access Server which desires to authenticate its links and a shared Authentication Server. [STANDARDS-TRACK]

 Pre-Shared Key Ciphersuites for Transport Layer Security (TLS)

 This document specifies three sets of new ciphersuites for the Transport Layer Security (TLS) protocol to support authentication based on pre-shared keys (PSKs). These pre-shared keys are symmetric keys, shared in advance among the communicating parties. The first set of ciphersuites uses only symmetric key operations for authentication. The second set uses a Diffie-Hellman exchange authenticated with a pre-shared key, and the third set combines public key authentication of the server with pre-shared key authentication of the client. [STANDARDS-TRACK]

 Transport Layer Security (TLS) Encryption for RADIUS

 This document specifies a transport profile for RADIUS using Transport Layer Security (TLS) over TCP as the transport protocol. This enables dynamic trust relationships between RADIUS servers. [STANDARDS-TRACK]

 Datagram Transport Layer Security (DTLS) as a Transport Layer for RADIUS

 The RADIUS protocol defined in RFC 2865 has limited support for authentication and encryption of RADIUS packets. The protocol transports data in the clear, although some parts of the packets can have obfuscated content. Packets may be replayed verbatim by an attacker, and client-server authentication is based on fixed shared secrets. This document specifies how the Datagram Transport Layer Security (DTLS) protocol may be used as a fix for these problems. It also describes how implementations of this proposal can coexist with current RADIUS systems.

 Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words

 RFC 2119 specifies common key words that may be used in protocol specifications. This document aims to reduce the ambiguity by clarifying that only UPPERCASE usage of the key words have the defined special meanings.

 Preparation, Enforcement, and Comparison of Internationalized Strings Representing Usernames and Passwords

 This document describes updated methods for handling Unicode strings representing usernames and passwords. The previous approach was known as SASLprep (RFC 4013) and was based on Stringprep (RFC 3454). The methods specified in this document provide a more sustainable approach to the handling of internationalized usernames and passwords. This document obsoletes RFC 7613.

 Guidance for External Pre-Shared Key (PSK) Usage in TLS

 This document provides usage guidance for external Pre-Shared Keys (PSKs) in Transport Layer Security (TLS) 1.3 as defined in RFC 8446. It lists TLS security properties provided by PSKs under certain assumptions, then it demonstrates how violations of these assumptions lead to attacks. Advice for applications to help meet these assumptions is provided. This document also discusses PSK use cases and provisioning processes. Finally, it lists the privacy and security properties that are not provided by TLS 1.3 when external PSKs are used.

 Recommendations for Secure Use of Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS)

 Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS) are used to protect data exchanged over a wide range of application protocols and can also form the basis for secure transport protocols. Over the years, the industry has witnessed several serious attacks on TLS and DTLS, including attacks on the most commonly used cipher suites and their modes of operation. This document provides the latest recommendations for ensuring the security of deployed services that use TLS and DTLS. These recommendations are applicable to the majority of use cases.
 RFC 7525, an earlier version of the TLS recommendations, was published when the industry was transitioning to TLS 1.2. Years later, this transition is largely complete, and TLS 1.3 is widely available. This document updates the guidance given the new environment and obsoletes RFC 7525. In addition, this document updates RFCs 5288 and 6066 in view of recent attacks.

 Informative References

 ECDHE_PSK Cipher Suites for Transport Layer Security (TLS)

 This document extends RFC 4279, RFC 4492, and RFC 4785 and specifies a set of cipher suites that use a pre-shared key (PSK) to authenticate an Elliptic Curve Diffie-Hellman exchange with Ephemeral keys (ECDHE). These cipher suites provide Perfect Forward Secrecy (PFS). This memo provides information for the Internet community.

 RADIUS over TCP

 The Remote Authentication Dial-In User Server (RADIUS) protocol has, until now, required the User Datagram Protocol (UDP) as the underlying transport layer. This document defines RADIUS over the Transmission Control Protocol (RADIUS/TCP), in order to address handling issues related to RADIUS over Transport Layer Security (RADIUS/TLS). It permits TCP to be used as a transport protocol for RADIUS only when a transport layer such as TLS or IPsec provides confidentiality and security. This document defines an Experimental Protocol for the Internet community.

 The Network Access Identifier

 In order to provide inter-domain authentication services, it is necessary to have a standardized method that domains can use to identify each other's users. This document defines the syntax for the Network Access Identifier (NAI), the user identifier submitted by the client prior to accessing resources. This document is a revised version of RFC 4282. It addresses issues with international character sets and makes a number of other corrections to RFC 4282.

 Dynamic Peer Discovery for RADIUS/TLS and RADIUS/DTLS Based on the Network Access Identifier (NAI)

 This document specifies a means to find authoritative RADIUS servers for a given realm. It is used in conjunction with either RADIUS over Transport Layer Security (RADIUS/TLS) or RADIUS over Datagram Transport Layer Security (RADIUS/DTLS).

 ECDHE_PSK with AES-GCM and AES-CCM Cipher Suites for TLS 1.2 and DTLS 1.2

 This document defines several new cipher suites for version 1.2 of the Transport Layer Security (TLS) protocol and version 1.2 of the Datagram Transport Layer Security (DTLS) protocol. These cipher suites are based on the Ephemeral Elliptic Curve Diffie-Hellman with Pre-Shared Key (ECDHE_PSK) key exchange together with the Authenticated Encryption with Associated Data (AEAD) algorithms AES-GCM and AES-CCM. PSK provides light and efficient authentication, ECDHE provides forward secrecy, and AES-GCM and AES-CCM provide encryption and integrity protection.

 The Transport Layer Security (TLS) Protocol Version 1.3

 This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows client/server applications to communicate over the Internet in a way that is designed to prevent eavesdropping, tampering, and message forgery.
 This document updates RFCs 5705 and 6066, and obsoletes RFCs 5077, 5246, and 6961. This document also specifies new requirements for TLS 1.2 implementations.

 Secure Password Ciphersuites for Transport Layer Security (TLS)

 This memo defines several new ciphersuites for the Transport Layer Security (TLS) protocol to support certificateless, secure authentication using only a simple, low-entropy password. The exchange is called "TLS-PWD". The ciphersuites are all based on an authentication and key exchange protocol, named "dragonfly", that is resistant to offline dictionary attacks.

 Randomness Improvements for Security Protocols

 Randomness is a crucial ingredient for Transport Layer Security (TLS) and related security protocols. Weak or predictable "cryptographically secure" pseudorandom number generators (CSPRNGs) can be abused or exploited for malicious purposes. An initial entropy source that seeds a CSPRNG might be weak or broken as well, which can also lead to critical and systemic security problems. This document describes a way for security protocol implementations to augment their CSPRNGs using long-term private keys. This improves randomness from broken or otherwise subverted CSPRNGs.
 This document is a product of the Crypto Forum Research Group (CFRG) in the IRTF.

 Importing External Pre-Shared Keys (PSKs) for TLS 1.3

 This document describes an interface for importing external Pre-Shared Keys (PSKs) into TLS 1.3.

 Acknowledgments
 Thanks to the many reviewers in the RADEXT Working Group for positive
 feedback.

 Author's Address

 InkBridge Networks

 alan.dekok@inkbridge.io

