
RFC 9846
The Transport Layer Security (TLS) Protocol Version
1.3

Abstract
This document specifies version 1.3 of the Transport Layer Security (TLS) protocol. TLS allows
client/server applications to communicate over the Internet in a way that is designed to prevent
eavesdropping, tampering, and message forgery.

This document updates RFCs 5705, 6066, 7627, and 8422 and obsoletes RFCs 5077, 5246, 6961,
8422, and 8446. This document also specifies new requirements for TLS 1.2 implementations.

Stream: Internet Engineering Task Force (IETF)
RFC: 9846
Obsoletes: 8446
Updates: 5705, 6066, 7627, 8422
Category: Standards Track
Published: January 2026
ISSN: 2070-1721
Author: E. Rescorla

Independent

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9846

Copyright Notice
Copyright (c) 2026 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Rescorla Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9846
https://www.rfc-editor.org/rfc/rfc8446
https://www.rfc-editor.org/rfc/rfc5705
https://www.rfc-editor.org/rfc/rfc6066
https://www.rfc-editor.org/rfc/rfc7627
https://www.rfc-editor.org/rfc/rfc8422
https://www.rfc-editor.org/info/rfc9846
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

This document may contain material from IETF Documents or IETF Contributions published or
made publicly available before November 10, 2008. The person(s) controlling the copyright in
some of this material may not have granted the IETF Trust the right to allow modifications of
such material outside the IETF Standards Process. Without obtaining an adequate license from
the person(s) controlling the copyright in such materials, this document may not be modified
outside the IETF Standards Process, and derivative works of it may not be created outside the
IETF Standards Process, except to format it for publication as an RFC or to translate it into
languages other than English.

Table of Contents
1. Introduction

1.1. Conventions and Terminology

1.2. Relationship to RFC 8446

1.3. Major Differences from TLS 1.2

1.4. Updates Affecting TLS 1.2

2. Protocol Overview

2.1. Incorrect DHE Share

2.2. Resumption and Pre-Shared Key (PSK)

2.3. 0-RTT Data

3. Presentation Language

3.1. Basic Block Size

3.2. Miscellaneous

3.3. Numbers

3.4. Vectors

3.5. Enumerateds

3.6. Constructed Types

3.7. Constants

3.8. Variants

6

8

8

9

10

10

13

14

16

18

18

18

19

19

20

21

21

21

RFC 9846 TLS January 2026

Rescorla Standards Track Page 2

4. Handshake Protocol

4.1. Key Exchange Messages

4.1.1. Cryptographic Negotiation

4.1.2. Client Hello

4.1.3. Server Hello

4.1.4. Hello Retry Request

4.2. Extensions

4.2.1. Supported Versions

4.2.2. Cookie

4.2.3. Signature Algorithms

4.2.4. Certificate Authorities

4.2.5. OID Filters

4.2.6. Post-Handshake Certificate-Based Client Authentication

4.2.7. Supported Groups

4.2.8. Key Share

4.2.9. Pre-Shared Key Exchange Modes

4.2.10. Early Data Indication

4.2.11. Pre-Shared Key Extension

4.3. Server Parameters

4.3.1. Encrypted Extensions

4.3.2. Certificate Request

4.4. Authentication Messages

4.4.1. The Transcript Hash

4.4.2. Certificate

4.4.3. Certificate Verify

4.4.4. Finished

4.5. End of Early Data

4.6. Post-Handshake Messages

4.6.1. New Session Ticket Message

4.6.2. Post-Handshake Authentication

22

23

23

25

27

29

30

34

35

35

38

38

39

40

41

44

44

46

50

50

50

51

52

53

57

58

60

60

60

62

RFC 9846 TLS January 2026

Rescorla Standards Track Page 3

4.6.3. Key and Initialization Vector Update

5. Record Protocol

5.1. Record Layer

5.2. Record Payload Protection

5.3. Per-Record Nonce

5.4. Record Padding

5.5. Limits on Key Usage

6. Alert Protocol

6.1. Closure Alerts

6.2. Error Alerts

7. Cryptographic Computations

7.1. Key Schedule

7.2. Updating Traffic Secrets

7.3. Traffic Key Calculation

7.4. (EC)DHE Shared Secret Calculation

7.4.1. Finite Field Diffie-Hellman

7.4.2. Elliptic Curve Diffie-Hellman

7.5. Exporters

8. 0-RTT and Anti-Replay

8.1. Single-Use Tickets

8.2. Client Hello Recording

8.3. Freshness Checks

9. Compliance Requirements

9.1. Mandatory-to-Implement Cipher Suites

9.2. Mandatory-to-Implement Extensions

9.3. Protocol Invariants

10. Security Considerations

11. IANA Considerations

11.1. Changes for this RFC

63

64

64

66

68

69

69

70

71

72

75

75

78

78

79

79

79

80

81

82

82

83

84

84

84

85

86

87

88

RFC 9846 TLS January 2026

Rescorla Standards Track Page 4

12. References

12.1. Normative References

12.2. Informative References

Appendix A. State Machine

A.1. Client

A.2. Server

Appendix B. Protocol Data Structures and Constant Values

B.1. Record Layer

B.2. Alert Messages

B.3. Handshake Protocol

B.3.1. Key Exchange Messages

B.3.2. Server Parameters Messages

B.3.3. Authentication Messages

B.3.4. Ticket Establishment

B.3.5. Updating Keys

B.4. Cipher Suites

Appendix C. Implementation Notes

C.1. Random Number Generation and Seeding

C.2. Certificates and Authentication

C.3. Implementation Pitfalls

C.4. Client and Server Tracking Prevention

C.5. Unauthenticated Operation

Appendix D. Updates to TLS 1.2

Appendix E. Backward Compatibility

E.1. Negotiating with an Older Server

E.2. Negotiating with an Older Client

E.3. 0-RTT Backward Compatibility

E.4. Middlebox Compatibility Mode

E.5. Security Restrictions Related to Backward Compatibility

89

89

91

99

100

101

102

102

103

104

105

111

112

112

113

113

114

114

114

115

116

117

117

117

118

119

119

119

120

RFC 9846 TLS January 2026

Rescorla Standards Track Page 5

Appendix F. Overview of Security Properties

F.1. Handshake

F.1.1. Key Derivation and HKDF

F.1.2. Certificate-Based Client Authentication

F.1.3. 0-RTT

F.1.4. Exporter Independence

F.1.5. Post-Compromise Security

F.1.6. External References

F.2. Record Layer

F.2.1. External References

F.3. Traffic Analysis

F.4. Side Channel Attacks

F.5. Replay Attacks on 0-RTT

F.5.1. Replay and Exporters

F.6. PSK Identity Exposure

F.7. Sharing PSKs Across Protocol Versions

F.8. External PSKs and Rerouting

F.9. Misbinding When Using Self-Signed Certificates or Raw Public Keys

F.10. Attacks on Static RSA

Contributors

Author's Address

121

121

124

124

125

125

125

125

125

126

126

127

127

129

129

129

129

130

130

131

138

1. Introduction
The primary goal of TLS is to provide a secure channel between two communicating peers; the
only requirement from the underlying transport is a reliable, in-order data stream. Specifically,
the secure channel should provide the following properties:

Authentication: The server side of the channel is always authenticated; the client side is
optionally authenticated. Authentication can happen via asymmetric cryptography (e.g., RSA

, the Elliptic Curve Digital Signature Algorithm (ECDSA) , or the Edwards-Curve
Digital Signature Algorithm (EdDSA)) or a symmetric pre-shared key (PSK).

•

[RSA] [DSS]
[RFC8032]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 6

Confidentiality: Data sent over the channel after establishment is only visible to the
endpoints. TLS does not hide the length of the data it transmits, though endpoints are able to
pad TLS records to obscure lengths and improve protection against traffic analysis
techniques.
Integrity: Data sent over the channel after establishment cannot be modified by attackers
without detection.

These properties should be true even in the face of an attacker who has complete control of the
network, as described in . See Appendix F for a more complete statement of the
relevant security properties.

TLS consists of two primary components:

A handshake protocol (Section 4) that authenticates the communicating parties, negotiates
cryptographic algorithms and parameters, and establishes shared keying material. The
handshake protocol is designed to resist tampering; an active attacker should not be able to
force the peers to negotiate different parameters than they would if the connection were not
under attack.
A record protocol (Section 5) that uses the parameters established by the handshake
protocol to protect traffic between the communicating peers. The record protocol divides
traffic up into a series of records, each of which is independently protected using the traffic
keys.

TLS is application protocol independent; higher-level protocols can layer on top of TLS
transparently. The TLS standard, however, does not specify how protocols add security with TLS;
how to initiate TLS handshaking and how to interpret the authentication certificates exchanged
are left to the judgment of the designers and implementors of protocols that run on top of TLS.
Application protocols using TLS specify how TLS works with their application protocol,
including how and when handshaking occurs, and how to do identity verification.
provides useful guidance on integrating TLS with application protocols.

This document defines TLS version 1.3. While TLS 1.3 is not directly compatible with previous
versions, all versions of TLS incorporate a versioning mechanism which allows clients and
servers to interoperably negotiate a common version if one is supported by both peers.

This document supersedes and obsoletes previous versions of TLS, including version 1.2
. It also obsoletes the TLS ticket mechanism defined in and replaces it with

the mechanism defined in Section 2.2. Because TLS 1.3 changes the way keys are derived, it
updates as described in Section 7.5. It also changes how Online Certificate Status
Protocol (OCSP) messages are carried and therefore updates and obsoletes
as described in Section 4.4.2.1.

•

•

[RFC3552]

•

•

MUST
[RFC9525]

[RFC5246] [RFC5077]

[RFC5705]
[RFC6066] [RFC6961]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 7

client:

connection:

endpoint:

handshake:

peer:

receiver:

sender:

server:

1.1. Conventions and Terminology
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

The following terms are used:

The endpoint initiating the TLS connection.

A transport-layer connection between two endpoints.

Either the client or server of the connection.

An initial negotiation between client and server that establishes the parameters of
their subsequent interactions within TLS.

An endpoint. When discussing a particular endpoint, "peer" refers to the endpoint that is
not the primary subject of discussion.

An endpoint that is receiving records.

An endpoint that is transmitting records.

The endpoint that did not initiate the TLS connection.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

1.2. Relationship to RFC 8446
TLS 1.3 was originally specified in . This document is a minor update to TLS 1.3 that
retains the same version number and is backward compatible. It tightens some requirements
and contains updated text in areas which were found to be unclear as well as other editorial
improvements. In addition, it removes the use of the term "master" as applied to secrets in favor
of the term "main" or shorter names where no term was necessary. This document makes the
following specific technical changes:

Forbid negotiating TLS 1.0 and 1.1 as they are now deprecated by .
Removes ambiguity around which hash is used with PreSharedKeys and HelloRetryRequest.
Require that clients ignore NewSessionTicket if they do not support resumption.
Upgrade the requirement to initiate key update before exceeding key usage limits to .
Limit the number of permitted KeyUpdate messages.
Restore text defining the level of "close_notify" to "warning".
Clarify behavior around "user_canceled", requiring that "close_notify" be sent and that
"user_canceled" should be ignored.
Add a "general_error" generic alert.

[RFC8446]

• [RFC8996]
•
•
• MUST

•
•
•

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 8

Corrected the lower bound on CertificateRequest.extensions to be 0 bytes. This was an error
in the syntax as it is possible to send no extensions, which results in length 0.

In addition, there have been some improvements to the security considerations, especially
around privacy.

•

1.3. Major Differences from TLS 1.2
The following is a list of the major functional differences between TLS 1.2 and TLS 1.3. It is not
intended to be exhaustive, and there are many minor differences.

The list of supported symmetric encryption algorithms has been pruned of all algorithms
that are considered legacy. Those that remain are all Authenticated Encryption with
Associated Data (AEAD) algorithms. The cipher suite concept has been changed to separate
the authentication and key exchange mechanisms from the record protection algorithm
(including secret key length) and a hash to be used with both the key derivation function
and handshake message authentication code (MAC).
A zero round-trip time (0-RTT) mode was added, saving a round trip at connection setup for
some application data, at the cost of certain security properties.
Static RSA and Diffie-Hellman cipher suites have been removed; all public-key based key
exchange mechanisms now provide forward secrecy.
All handshake messages after the ServerHello are now encrypted. The newly introduced
EncryptedExtensions message allows various extensions previously sent in the clear in the
ServerHello to also enjoy confidentiality protection.
The key derivation function has been redesigned. The new design allows easier analysis by
cryptographers due to their improved key separation properties. The HMAC-based Extract-
and-Expand Key Derivation Function (HKDF) is used as an underlying primitive.
The handshake state machine has been significantly restructured to be more consistent and
to remove superfluous messages such as ChangeCipherSpec (except when needed for
middlebox compatibility).
Elliptic curve algorithms are now in the base specification, and new signature algorithms,
such as EdDSA, are included. TLS 1.3 removed point format negotiation in favor of a single
point format for each curve.
Other cryptographic improvements were made, including changing the RSA padding to use
the RSA Probabilistic Signature Scheme (RSASSA-PSS) and the removal of compression, the
Digital Signature Algorithm (DSA), and custom Ephemeral Diffie-Hellman (DHE) groups.
The TLS 1.2 version negotiation mechanism has been deprecated in favor of a version list in
an extension. This increases compatibility with existing servers that incorrectly
implemented version negotiation.
Session resumption with and without server-side state as well as the PSK-based cipher suites
of earlier TLS versions have been replaced by a single new PSK exchange.
References have been updated to point to the updated versions of RFCs, as appropriate (e.g.,
RFC 5280 rather than RFC 3280).

•

•

•

•

•

•

•

•

•

•

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 9

1.4. Updates Affecting TLS 1.2
This document defines several changes that optionally affect implementations of TLS 1.2,
including those which do not also support TLS 1.3:

A version downgrade protection mechanism is described in Section 4.1.3.
RSASSA-PSS signature schemes are defined in Section 4.2.3.
The "supported_versions" ClientHello extension can be used to negotiate the version of TLS
to use, in preference to the legacy_version field of the ClientHello.
The "signature_algorithms_cert" extension allows a client to indicate which signature
algorithms it can validate in X.509 certificates.
The term "master" as applied to secrets has been removed, and the
"extended_master_secret" extension has been renamed to
"extended_main_secret".

Additionally, this document clarifies some compliance requirements for earlier versions of TLS;
see Section 9.3.

•
•
•

•

•
[RFC7627]

2. Protocol Overview
The cryptographic parameters used by the secure channel are produced by the TLS handshake
protocol. This sub-protocol of TLS is used by the client and server when first communicating
with each other. The handshake protocol allows peers to negotiate a protocol version, select
cryptographic algorithms, authenticate each other (with client authentication being optional),
and establish shared secret keying material. Once the handshake is complete, the peers use the
established keys to protect the application-layer traffic.

A failure of the handshake or other protocol error triggers the termination of the connection,
optionally preceded by an alert message (Section 6).

TLS supports three basic key exchange modes:

(EC)DHE (Diffie-Hellman over either finite fields or elliptic curves)
PSK-only
PSK with (EC)DHE

Figure 1 below shows the basic full TLS handshake:

•
•
•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 10

The handshake can be thought of as having three phases (indicated in the diagram above):

Key Exchange: Establish shared keying material and select the cryptographic parameters.
Everything after this phase is encrypted.
Server Parameters: Establish other handshake parameters (whether the client is
authenticated, application-layer protocol support, etc.).
Authentication: Authenticate the server (and, optionally, the client) and provide key
confirmation and handshake integrity.

In the Key Exchange phase, the client sends the ClientHello (Section 4.1.2) message, which
contains a random nonce (ClientHello.random); its offered protocol versions; a list of symmetric
cipher/hash pairs; either a list of Diffie-Hellman key shares (in the "key_share" (Section 4.2.8)

Figure 1: Message Flow for Full TLS Handshake

Client Server

Key ClientHello
Exch key_share*

signature_algorithms*
psk_key_exchange_modes*
pre_shared_key*

ServerHello Key
+ key_share* Exch

+ pre_shared_key*
{EncryptedExtensions} ^ Server
{CertificateRequest*} v Params

{Certificate*}
{CertificateVerify*} Auth

{Finished}
[Application Data*]

{Certificate*}
Auth {CertificateVerify*}

{Finished}
[Application Data] [Application Data]

+ Indicates noteworthy extensions sent in the
previously noted message.

Indicates optional or situation-dependent
messages/extensions that are not always sent.

{} Indicates messages protected using keys
derived from a [sender]_handshake_traffic_secret.

[] Indicates messages protected using keys
derived from [sender]_application_traffic_secret_N.

•

•

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 11

EncryptedExtensions:

CertificateRequest:

Certificate:

CertificateVerify:

Finished:

extension), a list of pre-shared key labels (in the "pre_shared_key" (Section 4.2.11) extension), or
both; and potentially additional extensions. Additional fields and/or messages may also be
present for middlebox compatibility.

The server processes the ClientHello and determines the appropriate cryptographic parameters
for the connection. It then responds with its own ServerHello (Section 4.1.3), which indicates the
negotiated connection parameters. The combination of the ClientHello and the ServerHello
determines the shared keys. If (EC)DHE key establishment is in use, then the ServerHello
contains a "key_share" extension with the server's ephemeral Diffie-Hellman share; the server's
share be in the same group as one of the client's shares. If PSK key establishment is in use,
then the ServerHello contains a "pre_shared_key" extension indicating which of the client's
offered PSKs was selected. Note that implementations can use (EC)DHE and PSK together, in
which case both extensions will be supplied.

The server then sends two messages to establish the Server Parameters:

responses to ClientHello extensions that are not required to determine
the cryptographic parameters, other than those that are specific to individual certificates.
[Section 4.3.1]

if certificate-based client authentication is desired, the desired parameters
for that certificate. This message is omitted if client authentication is not desired. [Section
4.3.2]

Finally, the client and server exchange Authentication messages. TLS uses the same set of
messages every time that certificate-based authentication is needed. (PSK-based authentication
happens as a side effect of key exchange.) Specifically:

The certificate of the endpoint and any per-certificate extensions. This message is
omitted by the server if not authenticating with a certificate and by the client if the server did
not send CertificateRequest (thus indicating that the client should not authenticate with a
certificate). Note that if raw public keys or the cached information extension

 are in use, then this message will not contain a certificate but rather some other
value corresponding to the server's long-term key. [Section 4.4.2]

A signature over the entire handshake using the private key corresponding to
the public key in the Certificate message. This message is omitted if the endpoint is not
authenticating via a certificate. [Section 4.4.3]

A MAC (Message Authentication Code) over the entire handshake. This message
provides key confirmation for the shared secrets established in the handshake binds the
endpoint's identity to the exchanged keys, and in PSK mode also authenticates the
handshake. [Section 4.4.4]

Upon receiving the server's messages, the client responds with its Authentication messages,
namely Certificate and CertificateVerify (if requested), and Finished.

MUST

[RFC7250]
[RFC7924]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 12

At this point, the handshake is complete, and the client and server derive the keying material
required by the record layer to exchange application-layer data protected through authenticated
encryption. Application Data be sent prior to sending the Finished message, except as
specified in Section 2.3. Note that while the server may send Application Data prior to receiving
the client's Authentication messages, any data sent at that point is, of course, being sent to an
unauthenticated peer.

MUST NOT

2.1. Incorrect DHE Share
If the client has not provided a sufficient "key_share" extension (e.g., it includes only DHE or
ECDHE groups unacceptable to or unsupported by the server), the server corrects the mismatch
with a HelloRetryRequest and the client needs to restart the handshake with an appropriate
"key_share" extension, as shown in Figure 2. If no common cryptographic parameters can be
negotiated, the server abort the handshake with an appropriate alert.

Note: The handshake transcript incorporates the initial ClientHello/HelloRetryRequest exchange;
it is not reset with the new ClientHello.

TLS also allows several optimized variants of the basic handshake, as described in the following
sections.

MUST

Figure 2: Message Flow for a Full Handshake with Mismatched Parameters

Client Server

ClientHello
+ key_share

HelloRetryRequest
+ key_share

ClientHello
+ key_share

ServerHello
+ key_share

{EncryptedExtensions}
{CertificateRequest*}

{Certificate*}
{CertificateVerify*}

{Finished}
[Application Data*]

{Certificate*}
{CertificateVerify*}
{Finished}
[Application Data] [Application Data]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 13

2.2. Resumption and Pre-Shared Key (PSK)
Although TLS PSKs can be established externally, PSKs can also be established in a previous
connection and then used to establish a new connection ("session resumption" or "resuming"
with a PSK). Once a handshake has completed, the server can send the client a PSK identity that
corresponds to a unique key derived from the initial handshake (see Section 4.6.1). The client
can then use that PSK identity in future handshakes to negotiate the use of the associated PSK. If
the server accepts the PSK, then the security context of the new connection is cryptographically
tied to the original connection and the key derived from the initial handshake is used to
bootstrap the cryptographic state instead of a full handshake. In TLS 1.2 and below, this
functionality was provided by "session IDs" and "session tickets" . Both mechanisms
are obsoleted in TLS 1.3.

PSKs can be used with (EC)DHE key exchange to provide forward secrecy in combination with
shared keys, or can be used alone, at the cost of losing forward secrecy for the application data.

Figure 3 shows a pair of handshakes in which the first handshake establishes a PSK and the
second handshake uses it:

[RFC5077]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 14

As the server is authenticating via a PSK, it does not send a Certificate or a CertificateVerify
message. When a client offers resumption via a PSK, it also supply a "key_share"
extension to the server to allow the server to decline resumption and fall back to a full
handshake, if needed. The server responds with a "pre_shared_key" extension to negotiate the
use of PSK key establishment and can (as shown here) respond with a "key_share" extension to
do (EC)DHE key establishment, thus providing forward secrecy.

When PSKs are provisioned externally, the PSK identity and the KDF hash algorithm to be used
with the PSK also be provisioned.

Note: When using an externally provisioned pre-shared secret, a critical consideration is using
sufficient entropy during the key generation, as discussed in . Deriving a shared secret
from a password or other low-entropy sources is not secure. A low-entropy secret, or password,

Figure 3: Message Flow for Resumption and PSK

Client Server

Initial Handshake:
ClientHello
+ key_share

ServerHello
+ key_share

{EncryptedExtensions}
{CertificateRequest*}

{Certificate*}
{CertificateVerify*}

{Finished}
[Application Data*]

{Certificate*}
{CertificateVerify*}
{Finished}

[NewSessionTicket]
[Application Data] [Application Data]

Subsequent Handshake:
ClientHello

key_share*
psk_key_exchange_modes
pre_shared_key

ServerHello
+ pre_shared_key

key_share*
{EncryptedExtensions}

{Finished}
[Application Data*]

{Finished}
[Application Data] [Application Data]

SHOULD

MUST

[RFC4086]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 15

is subject to dictionary attacks based on the PSK binder. The specified PSK authentication is not a
strong password-based authenticated key exchange even when used with Diffie-Hellman key
establishment. Specifically, it does not prevent an attacker that can observe the handshake from
performing a brute-force attack on the password/pre-shared key.

2.3. 0-RTT Data
When clients and servers share a PSK (either obtained externally or via a previous handshake),
TLS 1.3 allows clients to send data on the first flight ("early data"). The client uses the PSK to
authenticate the server and to encrypt the early data.

As shown in Figure 4, the 0-RTT data is just added to the 1-RTT handshake in the first flight. The
rest of the handshake uses the same messages as for a 1-RTT handshake with PSK resumption.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 16

IMPORTANT NOTE: The security properties for 0-RTT data are weaker than those for other kinds
of TLS data. Specifically:

The protocol does not provide any forward secrecy guarantees for this data. The server's
behavior determines what forward secrecy guarantees, if any, apply (see Section 8.1). This
behavior is not communicated to the client as part of the protocol. Therefore, absent out-of-
band knowledge of the server's behavior, the client should assume that this data is not
forward secret.

Figure 4: Message Flow for a 0-RTT Handshake

Client Server

ClientHello
early_data
key_share*
psk_key_exchange_modes
pre_shared_key

(Application Data*)
ServerHello

+ pre_shared_key
key_share*

{EncryptedExtensions}
+ early_data*

{Finished}
[Application Data*]

(EndOfEarlyData)
{Finished}
[Application Data] [Application Data]

+ Indicates noteworthy extensions sent in the
previously noted message.

Indicates optional or situation-dependent
messages/extensions that are not always sent.

() Indicates messages protected using keys
derived from a client_early_traffic_secret.

{} Indicates messages protected using keys
derived from a [sender]_handshake_traffic_secret.

[] Indicates messages protected using keys
derived from [sender]_application_traffic_secret_N.

1.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 17

There are no guarantees of non-replay between connections. Protection against replay for
ordinary TLS 1.3 1-RTT data is provided via the server's Random value, but 0-RTT data does
not depend on the ServerHello and therefore has weaker guarantees. This is especially
relevant if the data is authenticated either with TLS client authentication or inside the
application protocol. The same warnings apply to any use of the early_exporter_secret.

0-RTT data cannot be duplicated within a connection (i.e., the server will not process the same
data twice for the same connection), and an attacker will not be able to make 0-RTT data appear
to be 1-RTT data (because it is protected with different keys). Appendix F.5 contains a description
of potential attacks, and Section 8 describes mechanisms which the server can use to limit the
impact of replay.

2.

3. Presentation Language
This document deals with the formatting of data in an external representation. The following
very basic and somewhat casually defined presentation syntax will be used.

In the definitions below, optional components of this syntax are denoted by enclosing them in
"[[]]" (double brackets).

3.1. Basic Block Size
The representation of all data items is explicitly specified. The basic data block size is one byte
(i.e., 8 bits). Multiple-byte data items are concatenations of bytes, from left to right, from top to
bottom. From the byte stream, a multi-byte item (a numeric in the following example) is formed
(using C notation) by:

This byte ordering for multi-byte values is the commonplace network byte order or big-endian
format.

 value = (byte[0] << 8*(n-1)) | (byte[1] << 8*(n-2)) |
 ... | byte[n-1];

3.2. Miscellaneous
Comments begin with "/*" and end with "*/".

Single-byte entities containing uninterpreted data are of type opaque.

A type alias T' for an existing type T is defined by:

 T T';

RFC 9846 TLS January 2026

Rescorla Standards Track Page 18

3.3. Numbers
The basic numeric data type is an unsigned byte (uint8). All larger numeric data types are
constructed from a fixed-length series of bytes concatenated as described in Section 3.1 and are
also unsigned. The following numeric types are predefined.

All values, here and elsewhere in the specification, are transmitted in network byte (big-endian)
order; the uint32 represented by the hex bytes 01 02 03 04 is equivalent to the decimal value
16909060.

 uint8 uint16[2];
 uint8 uint24[3];
 uint8 uint32[4];
 uint8 uint64[8];

3.4. Vectors
A vector (single-dimensioned array) is a stream of homogeneous data elements. For presentation
purposes, this specification refers to vectors as lists. The size of the vector may be specified at
documentation time or left unspecified until runtime. In either case, the length declares the
number of bytes, not the number of elements, in the vector. The syntax for specifying a new
type, T', that is a fixed-length vector of type T is

Here, T' occupies n bytes in the data stream, where n is a multiple of the size of T. The length of
the vector is not included in the encoded stream.

In the following example, Datum is defined to be three consecutive bytes that the protocol does
not interpret, while Data is three consecutive Datum, consuming a total of nine bytes.

Variable-length vectors are defined by specifying a subrange of legal lengths, inclusively, using
the notation <floor..ceiling>. When these are encoded, the actual length precedes the vector's
contents in the byte stream. The length will be in the form of a number consuming as many
bytes as required to hold the vector's specified maximum (ceiling) length. A variable-length
vector with an actual length field of zero is referred to as an empty vector.

 T T'[n];

 opaque Datum[3]; /* three uninterpreted bytes */
 Datum Data[9]; /* three consecutive 3-byte vectors */

 T T'<floor..ceiling>;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 19

In the following example, "mandatory" is a vector that must contain between 300 and 400 bytes
of type opaque. It can never be empty. The actual length field consumes two bytes, a uint16,
which is sufficient to represent the value 400 (see Section 3.3). Similarly, "longer" can represent
up to 800 bytes of data, or 400 uint16 elements, and it may be empty. Its encoding will include a
two-byte actual length field prepended to the vector. The length of an encoded vector must be an
exact multiple of the length of a single element (e.g., a 17-byte vector of uint16 would be illegal).

 opaque mandatory<300..400>;
 /* length field is two bytes, cannot be empty */
 uint16 longer<0..800>;
 /* zero to 400 16-bit unsigned integers */

3.5. Enumerateds
An additional sparse data type, called "enum" or "enumerated", is available. Each definition is a
different type. Only enumerateds of the same type may be assigned or compared. Every element
of an enumerated must be assigned a value, as demonstrated in the following example. Since the
elements of the enumerated are not ordered, they can be assigned any unique value, in any
order.

Future extensions or additions to the protocol may define new values. Implementations need to
be able to parse and ignore unknown values unless the definition of the field states otherwise.

An enumerated occupies as much space in the byte stream as would its maximal defined ordinal
value. The following definition would cause one byte to be used to carry fields of type Color.

One may optionally specify a value without its associated tag to force the width definition
without defining a superfluous element.

In the following example, Taste will consume two bytes in the data stream but can only assume
the values 1, 2, or 4 in the current version of the protocol.

The names of the elements of an enumeration are scoped within the defined type. In the first
example, a fully qualified reference to the second element of the enumeration would be
Color.blue. Such qualification is not required if the target of the assignment is well specified.

 enum { e1(v1), e2(v2), ... , en(vn) [[, (n)]] } Te;

 enum { red(3), blue(5), white(7) } Color;

 enum { sweet(1), sour(2), bitter(4), (32000) } Taste;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 20

The names assigned to enumerateds do not need to be unique. The numerical value can describe
a range over which the same name applies. The value includes the minimum and maximum
inclusive values in that range, separated by two period characters. This is principally useful for
reserving regions of the space.

 Color color = Color.blue; /* overspecified, legal */
 Color color = blue; /* correct, type implicit */

 enum { sad(0), meh(1..254), happy(255) } Mood;

3.6. Constructed Types
Structure types may be constructed from primitive types for convenience. Each specification
declares a new, unique type. The syntax used for definitions is much like that of C.

Fixed- and variable-length list (vector) fields are allowed using the standard list syntax.
Structures V1 and V2 in the variants example (Section 3.8) demonstrate this.

The fields within a structure may be qualified using the type's name, with a syntax much like
that available for enumerateds. For example, T.f2 refers to the second field of the previous
declaration.

 struct {
 T1 f1;
 T2 f2;
 ...
 Tn fn;
 } T;

3.7. Constants
Fields and variables may be assigned a fixed value using "=", as in:

 struct {
 T1 f1 = 8; /* T.f1 must always be 8 */
 T2 f2;
 } T;

3.8. Variants
Defined structures may have variants based on some knowledge that is available within the
environment. The selector must be an enumerated type that defines the possible variants the
structure defines. Each arm of the select (below) specifies the type of that variant's field and an
optional field label. The mechanism by which the variant is selected at runtime is not prescribed
by the presentation language.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 21

For example:

 struct {
 T1 f1;
 T2 f2;

 Tn fn;
 select (E) {
 case e1: Te1 [[fe1]];
 case e2: Te2 [[fe2]];

 case en: Ten [[fen]];
 };
 } Tv;

 enum { apple(0), orange(1) } VariantTag;

 struct {
 uint16 number;
 opaque string<0..10>; /* variable length */
 } V1;

 struct {
 uint32 number;
 opaque string[10]; /* fixed length */
 } V2;

 struct {
 VariantTag type;
 select (VariantRecord.type) {
 case apple: V1;
 case orange: V2;
 };
 } VariantRecord;

4. Handshake Protocol
The handshake protocol is used to negotiate the security parameters of a connection. Handshake
messages are supplied to the TLS record layer, where they are encapsulated within one or more
TLSPlaintext or TLSCiphertext structures which are processed and transmitted as specified by
the current active connection state.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 22

Protocol messages be sent in the order defined in Section 4.4.1 and shown in the diagrams
in Section 2. A peer which receives a handshake message in an unexpected order abort the
handshake with an "unexpected_message" alert.

New handshake message types are assigned by IANA as described in Section 11.

 enum {
 client_hello(1),
 server_hello(2),
 new_session_ticket(4),
 end_of_early_data(5),
 encrypted_extensions(8),
 certificate(11),
 certificate_request(13),
 certificate_verify(15),
 finished(20),
 key_update(24),
 message_hash(254),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* remaining bytes in message */
 select (Handshake.msg_type) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 };
 } Handshake;

MUST
MUST

4.1. Key Exchange Messages
The key exchange messages are used to determine the security capabilities of the client and the
server and to establish shared secrets, including the traffic keys used to protect the rest of the
handshake and the data.

4.1.1. Cryptographic Negotiation

In TLS, the cryptographic negotiation proceeds by the client offering the following four sets of
options in its ClientHello:

A list of cipher suites which indicates the AEAD algorithm/HKDF hash pairs which the client
supports.

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 23

A "supported_groups" (Section 4.2.7) extension which indicates the (EC)DHE groups which
the client supports and a "key_share" (Section 4.2.8) extension which contains (EC)DHE
shares for some or all of these groups.
A "signature_algorithms" (Section 4.2.3) extension which indicates the signature algorithms
which the client can accept. A "signature_algorithms_cert" extension (Section 4.2.3) may also
be added to indicate certificate-specific signature algorithms.
A "pre_shared_key" (Section 4.2.11) extension which contains a list of symmetric key
identities known to the client and a "psk_key_exchange_modes" (Section 4.2.9) extension
which indicates the key exchange modes that may be used with PSKs.

If the server does not select a PSK, then the first three of these options are entirely orthogonal:
the server independently selects a cipher suite, an (EC)DHE group and key share for key
establishment, and a signature algorithm/certificate pair to authenticate itself to the client. If
there is no overlap between the received "supported_groups" and the groups supported by the
server, then the server abort the handshake with a "handshake_failure" or an
"insufficient_security" alert.

If the server selects a PSK, then it also select a key establishment mode from the list
indicated by the client's "psk_key_exchange_modes" extension (at present, PSK alone or with
(EC)DHE). Note that if the PSK can be used without (EC)DHE, then non-overlap in the
"supported_groups" parameters need not be fatal, as it is in the non-PSK case discussed in the
previous paragraph.

If the server selects an (EC)DHE group and the client did not offer a compatible "key_share"
extension in the initial ClientHello, the server respond with a HelloRetryRequest (Section
4.1.4) message.

If the server successfully selects parameters and does not require a HelloRetryRequest, it
indicates the selected parameters in the ServerHello as follows:

If PSK is being used, then the server will send a "pre_shared_key" extension indicating the
selected key.
When (EC)DHE is in use, the server will also provide a "key_share" extension. If PSK is not
being used, then (EC)DHE and certificate-based authentication are always used.
When authenticating via a certificate, the server will send the Certificate (Section 4.4.2) and
CertificateVerify (Section 4.4.3) messages. In TLS 1.3 as defined by this document, either a
PSK or a certificate is always used, but not both. Future documents may define how to use
them together.

If the server is unable to negotiate a supported set of parameters (i.e., there is no overlap
between the client and server parameters), it abort the handshake with either a
"handshake_failure" or "insufficient_security" fatal alert (see Section 6).

•

•

•

MUST

MUST

MUST

•

•

•

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 24

legacy_version:

4.1.2. Client Hello

When a client first connects to a server, it is to send the ClientHello as its first TLS
message. The client will also send a ClientHello when the server has responded to its ClientHello
with a HelloRetryRequest. In that case, the client send the same ClientHello without
modification, except as follows:

If a "key_share" extension was supplied in the HelloRetryRequest, replacing the list of shares
with a list containing a single KeyShareEntry from the indicated group.
Removing the "early_data" extension (Section 4.2.10) if one was present. Early data is not
permitted after a HelloRetryRequest.
Including a "cookie" extension if one was provided in the HelloRetryRequest.
Updating the "pre_shared_key" extension if present by recomputing the
"obfuscated_ticket_age" and binder values and (optionally) removing any PSKs which are
incompatible with the server's indicated cipher suite.
Optionally adding, removing, or changing the length of the "padding" extension .
Other modifications that may be allowed by an extension defined in the future and present
in the HelloRetryRequest.

Because TLS 1.3 forbids renegotiation, if a server has negotiated TLS 1.3 and receives a
ClientHello at any other time, it terminate the connection with an "unexpected_message"
alert.

If a server established a TLS connection with a previous version of TLS and receives a TLS 1.3
ClientHello in a renegotiation, it retain the previous protocol version. In particular, it

 negotiate TLS 1.3.

Structure of this message:

In previous versions of TLS, this field was used for version negotiation and
represented the highest version number supported by the client. Experience has shown that
many servers do not properly implement version negotiation, leading to "version

REQUIRED

MUST

•

•

•
•

• [RFC7685]
•

MUST

MUST MUST
NOT

 uint16 ProtocolVersion;
 opaque Random[32];

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
 Random random;
 opaque legacy_session_id<0..32>;
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<8..2^16-1>;
 } ClientHello;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 25

random:

legacy_session_id:

cipher_suites:

legacy_compression_methods:

extensions:

intolerance" in which the server rejects an otherwise acceptable ClientHello with a version
number higher than it supports. In TLS 1.3, the client indicates its version preferences in the
"supported_versions" extension (Section 4.2.1) and the legacy_version field be set to
0x0303, which is the version number for TLS 1.2. TLS 1.3 ClientHellos are identified as having
a legacy_version of 0x0303 and a supported_versions extension present with 0x0304 as the
highest version indicated therein. (See Appendix E for details about backward compatibility.)
A server which receives a legacy_version value not equal to 0x0303 abort the
handshake with an "illegal_parameter" alert.

32 bytes generated by a secure random number generator. See Appendix C for
additional information.

Versions of TLS before TLS 1.3 supported a "session resumption" feature
which has been merged with pre-shared keys in this version (see Section 2.2). A client which
has a cached session ID set by a pre-TLS 1.3 server set this field to that value. In
compatibility mode (see Appendix E.4), this field be non-empty, so a client not offering
a pre-TLS 1.3 session generate a new 32-byte value. This value need not be random but

 be unpredictable to avoid implementations fixating on a specific value (also known
as ossification). Otherwise, it be set as a zero-length list (i.e., a zero-valued single byte
length field).

A list of the symmetric cipher options supported by the client, specifically the
record protection algorithm (including secret key length) and a hash to be used with HKDF, in
descending order of client preference. Values are defined in Appendix B.4. If the list contains
cipher suites that the server does not recognize, support, or wish to use, the server
ignore those cipher suites and process the remaining ones as usual. If the client is attempting
a PSK key establishment, it advertise at least one cipher suite indicating a Hash
associated with the PSK.

Versions of TLS before 1.3 supported compression with the list
of supported compression methods being sent in this field. For every TLS 1.3 ClientHello, this
list contain exactly one byte, set to zero, which corresponds to the "null" compression
method in prior versions of TLS. If a TLS 1.3 ClientHello is received with any other value in
this field, the server abort the handshake with an "illegal_parameter" alert. Note that
TLS 1.3 servers might receive TLS 1.2 or prior ClientHellos which contain other compression
methods and (if negotiating such a prior version) follow the procedures for the
appropriate prior version of TLS.

Clients request extended functionality from servers by sending data in the
extensions field. The actual "Extension" format is defined in Section 4.2. In TLS 1.3, the use of
certain extensions is mandatory, as functionality has moved into extensions to preserve
ClientHello compatibility with previous versions of TLS. Servers ignore unrecognized
extensions.

All versions of TLS allow an extensions field to optionally follow the compression_methods field.
TLS 1.3 ClientHello messages always contain extensions (minimally "supported_versions",
otherwise, they will be interpreted as TLS 1.2 ClientHello messages). However, TLS 1.3 servers

MUST

MUST

SHOULD
MUST

MUST
SHOULD

MUST

MUST

SHOULD

MUST

MUST

MUST

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 26

might receive ClientHello messages without an extensions field from prior versions of TLS. The
presence of extensions can be detected by determining whether there are bytes following the
compression_methods field at the end of the ClientHello. Note that this method of detecting
optional data differs from the normal TLS method of having a variable-length field, but it is used
for compatibility with TLS before extensions were defined. TLS 1.3 servers will need to perform
this check first and only attempt to negotiate TLS 1.3 if the "supported_versions" extension is
present. If negotiating a version of TLS prior to 1.3, a server check that the message either
contains no data after legacy_compression_methods or that it contains a valid extensions block
with no data following. If not, then it abort the handshake with a "decode_error" alert.

In the event that a client requests additional functionality using extensions and this
functionality is not supplied by the server, the client abort the handshake.

After sending the ClientHello message, the client waits for a ServerHello or HelloRetryRequest
message. If early data is in use, the client may transmit early Application Data (Section 2.3) while
waiting for the next handshake message.

MUST

MUST

MAY

legacy_version:

random:

4.1.3. Server Hello

The server will send this message in response to a ClientHello message to proceed with the
handshake if it is able to negotiate an acceptable set of handshake parameters based on the
ClientHello.

Structure of this message:

In previous versions of TLS, this field was used for version negotiation and
represented the selected version number for the connection. Unfortunately, some
middleboxes fail when presented with new values. In TLS 1.3, the TLS server indicates its
version using the "supported_versions" extension (Section 4.2.1), and the legacy_version field

 be set to 0x0303, which is the version number for TLS 1.2. (See Appendix E for details
about backward compatibility.) A client which receives a TLS 1.3 Server Hello with a
legacy_version value not equal to 0x0303 abort the handshake with an
"illegal_parameter" alert.

32 bytes generated by a secure random number generator. See Appendix C for
additional information. The last 8 bytes be overwritten as described below if
negotiating TLS 1.2 or TLS 1.1, but the remaining bytes be random. This structure is
generated by the server and be generated independently of the ClientHello.random.

 struct {
 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
 Random random;
 opaque legacy_session_id_echo<0..32>;
 CipherSuite cipher_suite;
 uint8 legacy_compression_method = 0;
 Extension extensions<6..2^16-1>;
 } ServerHello;

MUST

MUST

MUST
MUST

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 27

legacy_session_id_echo:

cipher_suite:

legacy_compression_method:

extensions:

The contents of the client's legacy_session_id field. Note that this field
is echoed even if the client's value corresponded to a cached pre-TLS 1.3 session which the
server has chosen not to resume. A client which receives a legacy_session_id_echo field that
does not match what it sent in the ClientHello abort the handshake with an
"illegal_parameter" alert.

The single cipher suite selected by the server from the ClientHello.cipher_suites
list. A client which receives a cipher suite that was not offered abort the handshake
with an "illegal_parameter" alert.

A single byte which have the value 0. If a TLS 1.3
ServerHello is received with any other value in this field, the client abort the
handshake with an "illegal_parameter" alert.

A list of extensions. The ServerHello only include extensions which are
required to establish the cryptographic context and negotiate the protocol version. All TLS 1.3
ServerHello messages contain the "supported_versions" extension. Current ServerHello
messages additionally contain the "pre_shared_key" extension or the "key_share" extension,
or both (when using a PSK with (EC)DHE key establishment). Other extensions (see Section
4.2) are sent separately in the EncryptedExtensions message.

For reasons of backward compatibility with middleboxes (see Appendix E.4), the
HelloRetryRequest message uses the same structure as the ServerHello, but with Random set to
the special value of the SHA-256 of "HelloRetryRequest":

Upon receiving a message with type server_hello, implementations first examine the
Random value and, if it matches this value, process it as described in Section 4.1.4.

TLS 1.3 has a downgrade protection mechanism embedded in the server's random value. TLS 1.3
servers which negotiate TLS 1.2 or below in response to a ClientHello set the last 8 bytes of
their Random value specially in their ServerHello.

If negotiating TLS 1.2, TLS 1.3 servers set the last 8 bytes of their Random value to the
bytes:

 and Appendix E.5 forbid the negotiation of TLS versions below 1.2. However, server
implementations which do not follow that guidance set the last 8 bytes of their
ServerHello.random value to the bytes:

MUST

MUST

MUST
MUST

MUST

MUST

 CF 21 AD 74 E5 9A 61 11 BE 1D 8C 02 1E 65 B8 91
 C2 A2 11 16 7A BB 8C 5E 07 9E 09 E2 C8 A8 33 9C

MUST

MUST

MUST

 44 4F 57 4E 47 52 44 01

[RFC8996]
MUST

 44 4F 57 4E 47 52 44 00

RFC 9846 TLS January 2026

Rescorla Standards Track Page 28

TLS 1.3 clients receiving a ServerHello indicating TLS 1.2 or below check that the last 8
bytes are not equal to either of these values. TLS 1.2 clients also check that the last 8
bytes are not equal to the second value if the ServerHello indicates TLS 1.1 or below. If a match
is found, the client abort the handshake with an "illegal_parameter" alert. This mechanism
provides limited protection against downgrade attacks over and above what is provided by the
Finished exchange: because the ServerKeyExchange, a message present in TLS 1.2 and below,
includes a signature over both random values, it is not possible for an active attacker to modify
the random values without detection as long as ephemeral ciphers are used. It does not provide
downgrade protection when static RSA is used.

Note: This is a change from , so in practice many TLS 1.2 clients and servers will not
behave as specified above.

A legacy TLS client performing renegotiation with TLS 1.2 or prior and which receives a TLS 1.3
ServerHello during renegotiation abort the handshake with a "protocol_version" alert.
Note that renegotiation is not possible when TLS 1.3 has been negotiated.

MUST
SHOULD

MUST

[RFC5246]

MUST

4.1.4. Hello Retry Request

The server will send this message in response to a ClientHello message if it is able to find an
acceptable set of parameters but the ClientHello does not contain sufficient information to
proceed with the handshake. As discussed in Section 4.1.3, the HelloRetryRequest has the same
format as a ServerHello message, and the legacy_version, legacy_session_id_echo, cipher_suite,
and legacy_compression_method fields have the same meaning. However, for convenience we
discuss "HelloRetryRequest" throughout this document as if it were a distinct message.

The server's extensions contain "supported_versions". Additionally, it contain the
minimal set of extensions necessary for the client to generate a correct ClientHello pair. A
HelloRetryRequest contain any extensions that were not first offered by the client in
its ClientHello, with the exception of optionally the "cookie" (see Section 4.2.2) extension.

Upon receipt of a HelloRetryRequest, the client check the legacy_version,
legacy_session_id_echo, cipher_suite, and legacy_compression_method as specified in Section
4.1.3 and then process the extensions, starting with determining the version using
"supported_versions". Clients abort the handshake with an "illegal_parameter" alert if the
HelloRetryRequest would not result in any change in the ClientHello. If a client receives a second
HelloRetryRequest in the same connection (i.e., where the ClientHello was itself in response to a
HelloRetryRequest), it abort the handshake with an "unexpected_message" alert.

Otherwise, the client process all extensions in the HelloRetryRequest and send a second
updated ClientHello. The HelloRetryRequest extensions defined in this specification are:

supported_versions (see Section 4.2.1)
cookie (see Section 4.2.2)
key_share (see Section 4.2.8)

MUST SHOULD

MUST NOT

MUST

MUST

MUST

MUST

•
•
•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 29

A client which receives a cipher suite that was not offered abort the handshake. Servers
 ensure that they negotiate the same cipher suite when receiving a conformant updated

ClientHello (if the server selects the cipher suite as the first step in the negotiation, then this will
happen automatically). Upon receiving the ServerHello, clients check that the cipher suite
supplied in the ServerHello is the same as that in the HelloRetryRequest and otherwise abort the
handshake with an "illegal_parameter" alert.

In addition, in its updated ClientHello, the client offer any pre-shared keys
associated with a hash other than that of the selected cipher suite. This allows the client to avoid
having to compute partial hash transcripts for multiple hashes in the second ClientHello.

The value of selected_version in the HelloRetryRequest "supported_versions" extension be
retained in the ServerHello, and a client abort the handshake with an "illegal_parameter"
alert if the value changes.

MUST
MUST

MUST

SHOULD NOT

MUST
MUST

4.2. Extensions
A number of TLS messages contain tag-length-value encoded extensions structures.

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 server_name(0), /* RFC 6066 */
 max_fragment_length(1), /* RFC 6066 */
 status_request(5), /* RFC 6066 */
 supported_groups(10), /* RFC 8422, 7919 */
 signature_algorithms(13), /* RFC 8446 */
 use_srtp(14), /* RFC 5764 */
 heartbeat(15), /* RFC 6520 */
 application_layer_protocol_negotiation(16), /* RFC 7301 */
 signed_certificate_timestamp(18), /* RFC 6962 */
 client_certificate_type(19), /* RFC 7250 */
 server_certificate_type(20), /* RFC 7250 */
 padding(21), /* RFC 7685 */
 pre_shared_key(41), /* RFC 8446 */
 early_data(42), /* RFC 8446 */
 supported_versions(43), /* RFC 8446 */
 cookie(44), /* RFC 8446 */
 psk_key_exchange_modes(45), /* RFC 8446 */
 certificate_authorities(47), /* RFC 8446 */
 oid_filters(48), /* RFC 8446 */
 post_handshake_auth(49), /* RFC 8446 */
 signature_algorithms_cert(50), /* RFC 8446 */
 key_share(51), /* RFC 8446 */
 (65535)
 } ExtensionType;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 30

Here:

"extension_type" identifies the particular extension type.
"extension_data" contains information specific to the particular extension type.

The contents of the "extension_data" field are typically defined by an extension-specific structure
defined in the TLS presentation language. Unless otherwise specified, trailing data is forbidden.
That is, senders include data after the structure in the "extension_data" field. When
processing an extension, receivers abort the handshake with a "decode_error" alert if
there is data left over after parsing the structure. This does not apply if the receiver does not
implement or is configured to ignore an extension.

The list of extension types is maintained by IANA as described in Section 11.

Extensions are generally structured in a request/response fashion, though some extensions are
just requests with no corresponding response (i.e., indications). The client sends its extension
requests in the ClientHello message, and the server sends its extension responses in the
ServerHello, EncryptedExtensions, HelloRetryRequest, and Certificate messages. The server
sends extension requests in the CertificateRequest message which a client respond to with a
Certificate message. The server also send unsolicited extensions in the NewSessionTicket,
though the client does not respond directly to these.

Implementations send extension responses (i.e., in the ServerHello,
EncryptedExtensions, HelloRetryRequest, and Certificate messages) if the remote endpoint did
not send the corresponding extension requests, with the exception of the "cookie" extension in
the HelloRetryRequest. Upon receiving such an extension, an endpoint abort the
handshake with an "unsupported_extension" alert.

The table below indicates the messages where a given extension may appear, using the
following notation: CH (ClientHello), SH (ServerHello), EE (EncryptedExtensions), CT
(Certificate), CR (CertificateRequest), NST (NewSessionTicket), and HRR (HelloRetryRequest). If
an implementation receives an extension which it recognizes and which is not specified for the
message in which it appears, it abort the handshake with an "illegal_parameter" alert.

•
•

MUST NOT
MUST

MAY
MAY

MUST NOT

MUST

MUST

Extension TLS 1.3

server_name CH, EE

max_fragment_length CH, EE

status_request CH, CR, CT

supported_groups CH, EE

signature_algorithms CH, CR

use_srtp CH, EE

[RFC6066]

[RFC6066]

[RFC6066]

[RFC7919]

[RFC8446]

[RFC5764]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 31

Extension TLS 1.3

heartbeat CH, EE

application_layer_protocol_negotiation CH, EE

signed_certificate_timestamp CH, CR, CT

client_certificate_type CH, EE

server_certificate_type CH, EE

padding CH

cached_info CH, EE

compress_certificate CH, CR

record_size_limit CH, EE

delegated_credentials CH, CR, CT

supported_ekt_ciphers CH, EE

pre_shared_key CH, SH

early_data CH, EE, NST

psk_key_exchange_modes CH

cookie CH, HRR

supported_versions CH, SH, HRR

certificate_authorities CH, CR

oid_filters CR

post_handshake_auth CH

signature_algorithms_cert CH, CR

key_share CH, SH, HRR

transparency_info CH, CR, CT

connection_id CH, SH

external_id_hash CH, EE

[RFC6520]

[RFC7301]

[RFC6962]

[RFC7250]

[RFC7250]

[RFC7685]

[RFC7924]

[RFC8879]

[RFC8449]

[RFC9345]

[RFC8870]

[RFC8446]

[RFC8446]

[RFC8446]

[RFC8446]

[RFC8446]

[RFC8446]

[RFC8446]

[RFC8446]

[RFC8446]

[RFC8446]

[RFC9162]

[RFC9146]

[RFC8844]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 32

Note: This table includes only extensions marked "Recommended" at the time of this writing.

When multiple extensions of different types are present, the extensions appear in any
order, with the exception of "pre_shared_key" (Section 4.2.11) which be the last extension
in the ClientHello (but can appear anywhere in the ServerHello extensions block). There

 be more than one extension of the same type in a given extension block.

In TLS 1.3, unlike TLS 1.2, extensions are negotiated for each handshake even when in
resumption-PSK mode. However, 0-RTT parameters are those negotiated in the previous
handshake; mismatches may require rejecting 0-RTT (see Section 4.2.10).

There are subtle (and not so subtle) interactions that may occur in this protocol between new
features and existing features which may result in a significant reduction in overall security. The
following considerations should be taken into account when designing new extensions:

Some cases where a server does not agree to an extension are error conditions (e.g., the
handshake cannot continue), and some are simply refusals to support particular features. In
general, error alerts should be used for the former and a field in the server extension
response for the latter.
Extensions should, as far as possible, be designed to prevent any attack that forces use (or
non-use) of a particular feature by manipulation of handshake messages. This principle
should be followed regardless of whether the feature is believed to cause a security
problem. Often the fact that the extension fields are included in the inputs to the Finished
message hashes will be sufficient, but extreme care is needed when the extension changes
the meaning of messages sent in the handshake phase. Designers and implementors should
be aware of the fact that until the handshake has been authenticated, active attackers can
modify messages and insert, remove, or replace extensions.

Extension TLS 1.3

external_session_id CH, EE

quic_transport_parameters CH, EE

ticket_request CH, EE

Table 1: TLS Extensions

[RFC8844]

[RFC9001]

[RFC9149]

MAY
MUST

MUST
NOT

•

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 33

4.2.1. Supported Versions

The "supported_versions" extension is used by the client to indicate which versions of TLS it
supports and by the server to indicate which version it is using. The extension contains a list of
supported versions in preference order, with the most preferred version first. Implementations
of this specification send this extension in the ClientHello containing all versions of TLS
which they are prepared to negotiate (for this specification, that means minimally 0x0304, but if
previous versions of TLS are allowed to be negotiated, they be present as well).

If this extension is not present, servers which are compliant with this specification and which
also support TLS 1.2 negotiate TLS 1.2 or prior as specified in , even if
ClientHello.legacy_version is 0x0304 or later. Servers abort the handshake upon receiving a
ClientHello with legacy_version 0x0304 or later.

If this extension is present in the ClientHello, servers use the
ClientHello.legacy_version value for version negotiation and use only the
"supported_versions" extension to determine client preferences. Servers only select a
version of TLS present in that extension and ignore any unknown versions that are
present in that extension. Note that this mechanism makes it possible to negotiate a version
prior to TLS 1.2 if one side supports a sparse range. Implementations of TLS 1.3 which choose to
support prior versions of TLS support TLS 1.2. Servers be prepared to receive
ClientHellos that include this extension but do not include 0x0304 in the list of versions.

A server which negotiates a version of TLS prior to TLS 1.3 set ServerHello.version and
 send the "supported_versions" extension. A server which negotiates TLS 1.3

respond by sending a "supported_versions" extension containing the selected version value
(0x0304). It set the ServerHello.legacy_version field to 0x0303 (TLS 1.2).

After checking ServerHello.random to determine if the server handshake message is a
ServerHello or HelloRetryRequest, clients check for this extension prior to processing the
rest of the ServerHello. This will require clients to parse the ServerHello to read the extension. If
this extension is present, clients ignore the ServerHello.legacy_version value and
use only the "supported_versions" extension to determine the selected version. If the
"supported_versions" extension in the ServerHello contains a version not offered by the client or
contains a version prior to TLS 1.3, the client abort the handshake with an
"illegal_parameter" alert.

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 ProtocolVersion versions<2..254>;

 case server_hello: /* and HelloRetryRequest */
 ProtocolVersion selected_version;
 };
 } SupportedVersions;

MUST

MUST

MUST [RFC5246]
MAY

MUST NOT
MUST

MUST
MUST

SHOULD MUST

MUST
MUST NOT MUST

MUST

MUST

MUST MUST

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 34

4.2.2. Cookie

Cookies serve two primary purposes:

Allowing the server to force the client to demonstrate reachability at their apparent network
address (thus providing a measure of DoS protection). This is primarily useful for non-
connection-oriented transports (see for an example of this).
Allowing the server to offload state to the client, thus allowing it to send a HelloRetryRequest
without storing any state. The server can do this by storing the hash of the ClientHello in the
HelloRetryRequest cookie (protected with some suitable integrity protection algorithm).

When sending a HelloRetryRequest, the server provide a "cookie" extension to the client
(this is an exception to the usual rule that the only extensions that may be sent are those that
appear in the ClientHello). When sending the new ClientHello, the client copy the contents
of the extension received in the HelloRetryRequest into a "cookie" extension in the new
ClientHello. Clients use cookies in their initial ClientHello in subsequent connections.

When a server is operating statelessly, it may receive an unprotected record of type
change_cipher_spec between the first and second ClientHello (see Section 5). Since the server is
not storing any state, this will appear as if it were the first message to be received. Servers
operating statelessly ignore these records.

 struct {
 opaque cookie<1..2^16-1>;
 } Cookie;

•

[RFC6347]
•

MAY

MUST

MUST NOT

MUST

4.2.3. Signature Algorithms

TLS 1.3 provides two extensions for indicating which signature algorithms may be used in digital
signatures. The "signature_algorithms_cert" extension applies to signatures in certificates, and
the "signature_algorithms" extension, which originally appeared in TLS 1.2, applies to signatures
in CertificateVerify messages. The keys found in certificates also be of appropriate type for
the signature algorithms they are used with. This is a particular issue for RSA keys and PSS
signatures, as described below. If no "signature_algorithms_cert" extension is present, then the
"signature_algorithms" extension also applies to signatures appearing in certificates. Clients
which desire the server to authenticate itself via a certificate send the
"signature_algorithms" extension. If a server is authenticating via a certificate and the client has
not sent a "signature_algorithms" extension, then the server abort the handshake with a
"missing_extension" alert (see Section 9.2).

The "signature_algorithms_cert" extension was added to allow implementations which
supported different sets of algorithms for certificates and in TLS itself to clearly signal their
capabilities. TLS 1.2 implementations also process this extension. Implementations
which have the same policy in both cases omit the "signature_algorithms_cert" extension.

The "extension_data" field of these extensions contains a SignatureSchemeList value:

MUST

MUST

MUST

SHOULD
MAY

RFC 9846 TLS January 2026

Rescorla Standards Track Page 35

RSASSA-PKCS1-v1_5 algorithms:

Note: This enum is named "SignatureScheme" because there is already a "SignatureAlgorithm"
type in TLS 1.2, which this replaces. We use the term "signature algorithm" throughout the text.

Each SignatureScheme value lists a single signature algorithm that the client is willing to verify.
The values are indicated in descending order of preference. Note that a signature algorithm takes
as input an arbitrary-length message, rather than a digest. Algorithms which traditionally act on
a digest should be defined in TLS to first hash the input with a specified hash algorithm and then
proceed as usual. The code point groups listed above have the following meanings:

Indicates a signature algorithm using RSASSA-PKCS1-v1_5
 with the corresponding hash algorithm as defined in . These values refer

solely to signatures which appear in certificates (see Section 4.4.2.2) and are not defined for
use in signed TLS handshake messages, although they appear in "signature_algorithms"
and "signature_algorithms_cert" for backward compatibility with TLS 1.2.

 enum {
 /* RSASSA-PKCS1-v1_5 algorithms */
 rsa_pkcs1_sha256(0x0401),
 rsa_pkcs1_sha384(0x0501),
 rsa_pkcs1_sha512(0x0601),

 /* ECDSA algorithms */
 ecdsa_secp256r1_sha256(0x0403),
 ecdsa_secp384r1_sha384(0x0503),
 ecdsa_secp521r1_sha512(0x0603),

 /* RSASSA-PSS algorithms with public key OID rsaEncryption */
 rsa_pss_rsae_sha256(0x0804),
 rsa_pss_rsae_sha384(0x0805),
 rsa_pss_rsae_sha512(0x0806),

 /* EdDSA algorithms */
 ed25519(0x0807),
 ed448(0x0808),

 /* RSASSA-PSS algorithms with public key OID RSASSA-PSS */
 rsa_pss_pss_sha256(0x0809),
 rsa_pss_pss_sha384(0x080a),
 rsa_pss_pss_sha512(0x080b),

 /* Legacy algorithms */
 rsa_pkcs1_sha1(0x0201),
 ecdsa_sha1(0x0203),

 /* Reserved Code Points */
 private_use(0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 struct {
 SignatureScheme supported_signature_algorithms<2..2^16-2>;
 } SignatureSchemeList;

[RFC8017] [SHS]

MAY

RFC 9846 TLS January 2026

Rescorla Standards Track Page 36

ECDSA algorithms:

RSASSA-PSS RSAE algorithms:

EdDSA algorithms:

RSASSA-PSS PSS algorithms:

Legacy algorithms:

Indicates a signature algorithm using ECDSA , the corresponding
curve as defined in NIST SP 800-186 , and the corresponding hash algorithm as defined
in . The signature is represented as a DER-encoded ECDSA-Sig-Value structure as
defined in .

Indicates a signature algorithm using RSASSA-PSS with a mask
generation function of MGF1, as defined in . The digest used in MGF1 and the digest
being signed are both the corresponding hash algorithm as defined in . The length of the
Salt be equal to the length of the output of the digest algorithm. If the public key is
carried in an X.509 certificate, it use the rsaEncryption OID .

Indicates a signature algorithm using EdDSA as defined in or its
successors. Note that these correspond to the "PureEdDSA" algorithms and not the "prehash"
variants.

Indicates a signature algorithm using RSASSA-PSS with a mask
generation function of MGF1, as defined in . The digest used in MGF1 and the digest
being signed are both the corresponding hash algorithm as defined in . The length of the
Salt be equal to the length of the digest algorithm. If the public key is carried in an X.
509 certificate, it use the RSASSA-PSS OID . When used in certificate
signatures, the algorithm parameters be DER encoded. If the corresponding public
key's parameters are present, then the parameters in the signature be identical to those
in the public key.

Indicates algorithms which are being deprecated because they use
algorithms with known weaknesses, specifically SHA-1 which is used in this context with
either (1) RSA using RSASSA-PKCS1-v1_5 or (2) ECDSA. These values refer solely to signatures
which appear in certificates (see Section 4.4.2.2) and are not defined for use in signed TLS
handshake messages, although they appear in "signature_algorithms" and
"signature_algorithms_cert" for backward compatibility with TLS 1.2. Endpoints
negotiate these algorithms but are permitted to do so solely for backward compatibility.
Clients offering these values list them as the lowest priority (listed after all other
algorithms in SignatureSchemeList). TLS 1.3 servers offer a SHA-1 signed
certificate unless no valid certificate chain can be produced without it (see Section 4.4.2.2).

The signatures on certificates that are self-signed or certificates that are trust anchors are not
validated, since they begin a certification path (see). A certificate that
begins a certification path use a signature algorithm that is not advertised as being
supported in the "signature_algorithms" and "signature_algorithms_cert" extensions.

Note that TLS 1.2 defines this extension differently. TLS 1.3 implementations willing to negotiate
TLS 1.2 behave in accordance with the requirements of when negotiating that
version. In particular:

TLS 1.2 ClientHellos omit this extension.

[DSS]
[ECDP]

[SHS] [X690]
[RFC4492]

[RFC8017]
[SHS]

MUST
MUST [RFC5280]

[RFC8032]

[RFC8017]
[SHS]

MUST
MUST [RFC5756]

MUST
MUST

MAY
SHOULD NOT

MUST
MUST NOT

[RFC5280], Section 3.2
MAY

MUST [RFC5246]

• MAY

RFC 9846 TLS January 2026

Rescorla Standards Track Page 37

https://www.rfc-editor.org/rfc/rfc5280#section-3.2

In TLS 1.2, the extension contained hash/signature pairs. The pairs are encoded in two
octets, so SignatureScheme values have been allocated to align with TLS 1.2's encoding. Some
legacy pairs are left unallocated. These algorithms are deprecated as of TLS 1.3. They

 be offered or negotiated by any implementation. In particular, MD5 , SHA-224,
and DSA be used.
ECDSA signature schemes align with TLS 1.2's ECDSA hash/signature pairs. However, the old
semantics did not constrain the signing curve. If TLS 1.2 is negotiated, implementations

 be prepared to accept a signature that uses any curve that they advertised in the
"supported_groups" extension.
Implementations that advertise support for RSASSA-PSS (which is mandatory in TLS 1.3)

 be prepared to accept a signature using that scheme even when TLS 1.2 is negotiated.
In TLS 1.2, RSASSA-PSS is used with RSA cipher suites.

•

MUST
NOT [SLOTH]

MUST NOT

•

MUST

•
MUST

authorities:

4.2.4. Certificate Authorities

The "certificate_authorities" extension is used to indicate the certificate authorities (CAs) which
an endpoint supports and which be used by the receiving endpoint to guide certificate
selection.

The body of the "certificate_authorities" extension consists of a CertificateAuthoritiesExtension
structure.

A list of the distinguished names of acceptable certificate authorities,
represented in DER-encoded format. These distinguished names specify a desired
distinguished name for a trust anchor or subordinate CA; thus, this message can be used to
describe known trust anchors as well as a desired authorization space.

The client send the "certificate_authorities" extension in the ClientHello message. The server
 send it in the CertificateRequest message.

The "trusted_ca_keys" extension , which serves a similar purpose, but is more
complicated, is not used in TLS 1.3 (although it may appear in ClientHello messages from clients
which are offering prior versions of TLS).

SHOULD

 opaque DistinguishedName<1..2^16-1>;

 struct {
 DistinguishedName authorities<3..2^16-1>;
 } CertificateAuthoritiesExtension;

[X501]
[X690]

MAY
MAY

[RFC6066]

4.2.5. OID Filters

The "oid_filters" extension allows servers to provide a list of OID/value pairs which it would like
the client's certificate to match. This extension, if provided by the server, only be sent in
the CertificateRequest message.

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 38

filters: A list of certificate extension OIDs with their allowed value(s) and
represented in DER-encoded format. Some certificate extension OIDs allow multiple
values (e.g., Extended Key Usage). If the server has included a non-empty filters list, the client
certificate included in the response contain all of the specified extension OIDs that the
client recognizes. For each extension OID recognized by the client, all of the specified values

 be present in the client certificate (but the certificate have other values as well).
However, the client ignore and skip any unrecognized certificate extension OIDs. If the
client ignored some of the required certificate extension OIDs and supplied a certificate that
does not satisfy the request, the server at its discretion either continue the connection
without client authentication or abort the handshake with an "unsupported_certificate" alert.
Any given OID appear more than once in the filters list.

PKIX RFCs define a variety of certificate extension OIDs and their corresponding value types.
Depending on the type, matching certificate extension values are not necessarily bitwise-equal.
It is expected that TLS implementations will rely on their PKI libraries to perform certificate
selection using certificate extension OIDs.

This document defines matching rules for two standard certificate extensions defined in
:

The Key Usage extension in a certificate matches the request when all key usage bits
asserted in the request are also asserted in the Key Usage certificate extension.
The Extended Key Usage extension in a certificate matches the request when all key purpose
OIDs present in the request are also found in the Extended Key Usage certificate extension.
The special anyExtendedKeyUsage OID be used in the request.

Separate specifications may define matching rules for other certificate extensions.

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } OIDFilter;

 struct {
 OIDFilter filters<0..2^16-1>;
 } OIDFilterExtension;

[RFC5280]
[X690]

MUST

MUST MAY
MUST

MAY

MUST NOT

[RFC5280]

•

•

MUST NOT

4.2.6. Post-Handshake Certificate-Based Client Authentication

The "post_handshake_auth" extension is used to indicate that a client is willing to perform post-
handshake authentication (Section 4.6.2). Servers send a post-handshake
CertificateRequest to clients which do not offer this extension. Servers send this
extension.

MUST NOT
MUST NOT

 struct {} PostHandshakeAuth;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 39

The "extension_data" field of the "post_handshake_auth" extension is zero length.

Elliptic Curve Groups (ECDHE):

Finite Field Groups (DHE):

4.2.7. Supported Groups

When sent by the client, the "supported_groups" extension indicates the named groups which
the client supports for key exchange, ordered from most preferred to least preferred.

Note: In versions of TLS prior to TLS 1.3, this extension was named "elliptic_curves" and only
contained elliptic curve groups. See and . This extension was also used to
negotiate ECDSA curves. Signature algorithms are now negotiated independently (see Section
4.2.3).

The "extension_data" field of this extension contains a "NamedGroupList" value:

Indicates support for the corresponding named curve, defined
in either NIST SP 800-186 or in . Values 0xFE00 through 0xFEFF are
reserved for Private Use .

Indicates support for the corresponding finite field group, defined in
. Values 0x01FC through 0x01FF are reserved for Private Use.

Items in "named_group_list" are ordered according to the sender's preferences (most preferred
choice first). The "named_group_list" contain any duplicate entries. A recipient
abort a connection with a fatal illegal_parameter alert if it detects a duplicate entry.

As of TLS 1.3, servers are permitted to send the "supported_groups" extension to the client.
Clients act upon any information found in "supported_groups" prior to successful
completion of the handshake but use the information learned from a successfully
completed handshake to change what groups they use in their "key_share" extension in
subsequent connections. If the server has a group it prefers to the ones in the "key_share"

[RFC8422] [RFC7919]

 enum {

 /* Elliptic Curve Groups (ECDHE) */
 secp256r1(0x0017), secp384r1(0x0018), secp521r1(0x0019),
 x25519(0x001D), x448(0x001E),

 /* Finite Field Groups (DHE) */
 ffdhe2048(0x0100), ffdhe3072(0x0101), ffdhe4096(0x0102),
 ffdhe6144(0x0103), ffdhe8192(0x0104),

 /* Reserved Code Points */
 ffdhe_private_use(0x01FC..0x01FF),
 ecdhe_private_use(0xFE00..0xFEFF),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<2..2^16-1>;
 } NamedGroupList;

[ECDP] [RFC7748]
[RFC8126]

[RFC7919]

MUST NOT MAY

MUST NOT
MAY

RFC 9846 TLS January 2026

Rescorla Standards Track Page 40

extension but is still willing to accept the ClientHello, it send "supported_groups" to
update the client's view of its preferences; this extension contain all groups the server
supports, regardless of whether they are currently supported by the client.

SHOULD
SHOULD

group:

key_exchange:

client_shares:

4.2.8. Key Share

The "key_share" extension contains the endpoint's cryptographic parameters.

Clients send an empty client_shares list to request group selection from the server, at the
cost of an additional round trip (see Section 4.1.4).

The named group for the key being exchanged.

Key exchange information. The contents of this field are determined by the
specified group and its corresponding definition. Finite Field Diffie-Hellman
parameters are described in Section 4.2.8.1; Elliptic Curve Diffie-Hellman parameters are
described in Section 4.2.8.2.

In the ClientHello message, the "extension_data" field of this extension contains a
"KeyShareClientHello" value:

A list of offered KeyShareEntry values in descending order of client preference.

This list be empty if the client is requesting a HelloRetryRequest. Each KeyShareEntry value
 correspond to a group offered in the "supported_groups" extension and appear in

the same order. However, the values be a non-contiguous subset of the "supported_groups"
extension and omit the most preferred groups. Such a situation could arise if the most
preferred groups are new and unlikely to be supported in enough places to make pregenerating
key shares for them efficient.

For this reason, the omission of a share for group A and inclusion of one for group B does not
mean that the client prefers B to A. Selecting a group based on KeyShareEntry may result in the
use of a less preferred group than the client and server mutually support, though saving the
round trip of HelloRetryRequest. Servers that wish to respect the client's group preferences

 first select a group based on "supported_groups" and then either send a ServerHello or
a HelloRetryRequest depending on the contents of KeyshareClienthello.

MAY

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;
 } KeyShareEntry;

[DH76]

 struct {
 KeyShareEntry client_shares<0..2^16-1>;
 } KeyShareClientHello;

MAY
MUST MUST

MAY
MAY

SHOULD

RFC 9846 TLS January 2026

Rescorla Standards Track Page 41

selected_group:

server_share:

Clients can offer as many KeyShareEntry values as the number of supported groups it is offering,
each representing a single set of key exchange parameters. For instance, a client might offer
shares for several elliptic curves or multiple FFDHE groups. The key_exchange values for each
KeyShareEntry be generated independently. Clients offer multiple
KeyShareEntry values for the same group. Clients offer any KeyShareEntry values for
groups not listed in the client's "supported_groups" extension. Servers check for violations
of these rules and abort the handshake with an "illegal_parameter" alert if one is violated.

In a HelloRetryRequest message, the "extension_data" field of this extension contains a
KeyShareHelloRetryRequest value:

The mutually supported group the server intends to negotiate and is
requesting a retried ClientHello/KeyShare for.

Upon receipt of this extension in a HelloRetryRequest, the client verify that (1) the
selected_group field corresponds to a group which was provided in the "supported_groups"
extension in the original ClientHello and (2) the selected_group field does not correspond to a
group which was provided in the "key_share" extension in the original ClientHello. If either of
these checks fails, then the client abort the handshake with an "illegal_parameter" alert.
Otherwise, when sending the new ClientHello, the client replace the original "key_share"
extension with one containing only a new KeyShareEntry for the group indicated in the
selected_group field of the triggering HelloRetryRequest.

In a ServerHello message, the "extension_data" field of this extension contains a
KeyShareServerHello value:

A single KeyShareEntry value that is in the same group as one of the client's
shares.

If using (EC)DHE key establishment, servers offer exactly one KeyShareEntry in the ServerHello.
This value be in the same group as the KeyShareEntry value offered by the client that the
server has selected for the negotiated key exchange. Servers send a KeyShareEntry
for any group not indicated in the client's "supported_groups" extension and send a
KeyShareEntry when using the "psk_ke" PskKeyExchangeMode. If using (EC)DHE key
establishment and a HelloRetryRequest containing a "key_share" extension was received by the

MUST MUST NOT
MUST NOT

MAY

 struct {
 NamedGroup selected_group;
 } KeyShareHelloRetryRequest;

MUST

MUST
MUST

 struct {
 KeyShareEntry server_share;
 } KeyShareServerHello;

MUST
MUST NOT

MUST NOT

RFC 9846 TLS January 2026

Rescorla Standards Track Page 42

client, the client verify that the selected NamedGroup in the ServerHello is the same as
that in the HelloRetryRequest. If this check fails, the client abort the handshake with an
"illegal_parameter" alert.

MUST
MUST

4.2.8.1. Diffie-Hellman Parameters
Diffie-Hellman parameters for both clients and servers are encoded in the opaque
key_exchange field of a KeyShareEntry in a KeyShare structure. The opaque value contains the
Diffie-Hellman public value (Y = gX mod p) for the specified group (see for group
definitions) encoded as a big-endian integer and padded to the left with zeros to the size of p in
bytes.

Note: For a given Diffie-Hellman group, the padding results in all public keys having the same
length.

Peers validate each other's public key Y by ensuring that 1 < Y < p-1. This check ensures
that the remote peer is properly behaved and isn't forcing the local system into a small subgroup.

[DH76]

[RFC7919]

MUST

4.2.8.2. ECDHE Parameters
ECDHE parameters for both clients and servers are encoded in the opaque key_exchange field of
a KeyShareEntry in a KeyShare structure.

For secp256r1, secp384r1, and secp521r1, the contents are the serialized value of the following
struct:

X and Y, respectively, are the binary representations of the x and y values in network byte order.
There are no internal length markers, so each number representation occupies as many octets as
implied by the curve parameters. For P-256, this means that each of X and Y use 32 octets,
padded on the left by zeros if necessary. For P-384, they take 48 octets each. For P-521, they take
66 octets each.

For the curves secp256r1, secp384r1, and secp521r1, peers validate each other's public
value Q by ensuring that the point is a valid point on the elliptic curve. The appropriate
validation procedures are defined in Appendix D.1 of and alternatively in Section 5.6.2.3
of . This process consists of three steps: (1) verify that Q is not the point at
infinity (O), (2) verify that for Q = (x, y) both integers x and y are in the correct interval, and (3)
ensure that (x, y) is a correct solution to the elliptic curve equation. For these curves,
implementors do not need to verify membership in the correct subgroup.

For X25519 and X448, the content of the public value is the K_A or K_B value described in
. This is 32 bytes for X25519 and 56 bytes for X448.

 struct {
 uint8 legacy_form = 4;
 opaque X[coordinate_length];
 opaque Y[coordinate_length];
 } UncompressedPointRepresentation;

MUST

[ECDP]
[KEYAGREEMENT]

Section
6 of [RFC7748]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 43

https://www.rfc-editor.org/rfc/rfc7748#section-6
https://www.rfc-editor.org/rfc/rfc7748#section-6

Note: Versions of TLS prior to 1.3 permitted point format negotiation; TLS 1.3 removes this
feature in favor of a single point format for each curve.

psk_ke:

psk_dhe_ke:

4.2.9. Pre-Shared Key Exchange Modes

To use PSKs, clients also send a "psk_key_exchange_modes" extension. The semantics of
this extension are that the client only supports the use of PSKs with these modes, which restricts
both the use of PSKs offered in this ClientHello and those which the server might supply via
NewSessionTicket.

A client provide a "psk_key_exchange_modes" extension if it offers a "pre_shared_key"
extension. If clients offer "pre_shared_key" without a "psk_key_exchange_modes" extension,
servers abort the handshake. Servers select a key exchange mode that is not
listed by the client. This extension also restricts the modes for use with PSK resumption. Servers

 send NewSessionTicket with tickets that are not compatible with the advertised
modes; however, if a server does so, the impact will just be that the client's attempts at
resumption fail.

The server send a "psk_key_exchange_modes" extension.

PSK-only key establishment. In this mode, the server supply a "key_share"
value.

PSK with (EC)DHE key establishment. In this mode, the client and server
supply "key_share" values as described in Section 4.2.8.

Any future values that are allocated must ensure that the transmitted protocol messages
unambiguously identify which mode was selected by the server; at present, this is indicated by
the presence of the "key_share" in the ServerHello.

MUST

MUST

MUST MUST NOT

SHOULD NOT

MUST NOT

 enum { psk_ke(0), psk_dhe_ke(1), (255) } PskKeyExchangeMode;

 struct {
 PskKeyExchangeMode ke_modes<1..255>;
 } PskKeyExchangeModes;

MUST NOT

MUST

4.2.10. Early Data Indication

When a PSK is used and early data is allowed for that PSK (see for instance Appendix B.3.4), the
client can send Application Data in its first flight of messages. If the client opts to do so, it
supply both the "pre_shared_key" and "early_data" extensions.

The "extension_data" field of this extension contains an "EarlyDataIndication" value.

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 44

See Section 4.6.1 for details regarding the use of the max_early_data_size field.

The parameters for the 0-RTT data (version, symmetric cipher suite, Application-Layer Protocol
Negotiation (ALPN) protocol, etc.) are those associated with the PSK in use. For
externally provisioned PSKs, the associated values are those provisioned along with the key. For
PSKs established via a NewSessionTicket message, the associated values are those which were
negotiated in the connection which established the PSK. The PSK used to encrypt the early data

 be the first PSK listed in the client's "pre_shared_key" extension.

For PSKs provisioned via NewSessionTicket, a server validate that the ticket age for the
selected PSK identity (computed by subtracting ticket_age_add from
PskIdentity.obfuscated_ticket_age modulo 232) is within a small tolerance of the time since the
ticket was issued (see Section 8). If it is not, the server proceed with the handshake but
reject 0-RTT, and take any other action that assumes that this ClientHello is fresh.

0-RTT messages sent in the first flight have the same (encrypted) content types as messages of
the same type sent in other flights (handshake and application_data) but are protected under
different keys. After receiving the server's Finished message, if the server has accepted early
data, an EndOfEarlyData message will be sent to indicate the key change. This message will be
encrypted with the 0-RTT traffic keys.

A server which receives an "early_data" extension behave in one of three ways:

Ignore the extension and return a regular 1-RTT response. The server then skips past early
data by attempting to deprotect received records using the handshake traffic key, discarding
records which fail deprotection (up to the configured max_early_data_size). Once a record is
deprotected successfully, it is treated as the start of the client's second flight and the server
proceeds as with an ordinary 1-RTT handshake.
Request that the client send another ClientHello by responding with a HelloRetryRequest. A
client include the "early_data" extension in its followup ClientHello. The server
then ignores early data by skipping all records with an external content type of
"application_data" (indicating that they are encrypted), up to the configured
max_early_data_size.
Return its own "early_data" extension in EncryptedExtensions, indicating that it intends to
process the early data. It is not possible for the server to accept only a subset of the early
data messages. Even though the server sends a message accepting early data, the actual
early data itself may already be in flight by the time the server generates this message.

 struct {} Empty;

 struct {
 select (Handshake.msg_type) {
 case new_session_ticket: uint32 max_early_data_size;
 case client_hello: Empty;
 case encrypted_extensions: Empty;
 };
 } EarlyDataIndication;

[RFC7301]

MUST

MUST

SHOULD
SHOULD NOT

MUST

•

•
MUST NOT

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 45

In order to accept early data, the server have selected the first key offered in the client's
"pre_shared_key" extension. In addition, it verify that the following values are the same as
those associated with the selected PSK:

The selected TLS version number
The selected cipher suite
The selected ALPN protocol, if any

These requirements are a superset of those needed to perform a 1-RTT handshake using the PSK
in question.

Future extensions define their interaction with 0-RTT.

If any of these checks fail, the server respond with the extension and must discard all
the first-flight data using one of the first two mechanisms listed above (thus falling back to 1-RTT
or 2-RTT). If the client attempts a 0-RTT handshake but the server rejects it, the server will
generally not have the 0-RTT record protection keys and must instead use trial decryption
(either with the 1-RTT handshake keys or by looking for a cleartext ClientHello in the case of a
HelloRetryRequest) to find the first non-0-RTT message.

If the server chooses to accept the "early_data" extension, then it comply with the same
error-handling requirements specified for all records when processing early data records.
Specifically, if the server fails to decrypt a 0-RTT record following an accepted "early_data"
extension, it terminate the connection with a "bad_record_mac" alert as per Section 5.2.

If the server rejects the "early_data" extension, the client application opt to retransmit the
Application Data previously sent in early data once the handshake has been completed. Note
that automatic retransmission of early data could result in incorrect assumptions regarding the
status of the connection. For instance, when the negotiated connection selects a different ALPN
protocol from what was used for the early data, an application might need to construct different
messages. Similarly, if early data assumes anything about the connection state, it might be sent
in error after the handshake completes.

A TLS implementation automatically resend early data; applications are in a better
position to decide when retransmission is appropriate. A TLS implementation
automatically resend early data unless the negotiated connection selects the same ALPN
protocol.

MUST
MUST

•
•
• [RFC7301]

MUST

MUST NOT

MUST

MUST

MAY

SHOULD NOT
MUST NOT

4.2.11. Pre-Shared Key Extension

The "pre_shared_key" extension is used to negotiate the identity of the pre-shared key to be used
with a given handshake in association with PSK key establishment.

The "extension_data" field of this extension contains a "PreSharedKeyExtension" value:

RFC 9846 TLS January 2026

Rescorla Standards Track Page 46

identity:

obfuscated_ticket_age:

identities:

binders:

selected_identity:

A label for a key. For instance, a ticket (as defined in Appendix B.3.4) or a label for a
pre-shared key established externally.

An obfuscated version of the age of the key. Section 4.2.11.1 describes
how to form this value for identities established via the NewSessionTicket message. For
identities established externally, an obfuscated_ticket_age of 0 be used, and servers

 ignore the value.

A list of the identities that the client is willing to negotiate with the server. If sent
alongside the "early_data" extension (see Section 4.2.10), the first identity is the one used for 0-
RTT data.

A series of HMAC values, one for each value in the identities list and in the same
order, computed as described below.

The server's chosen identity expressed as a (0-based) index into the identities
in the client's "OfferedPsks.identities" list.

Each PSK is associated with a single Hash algorithm. For PSKs established via the ticket
mechanism (Section 4.6.1), this is the KDF Hash algorithm on the connection where the ticket
was established. For externally established PSKs, the Hash algorithm be set when the PSK
is established or default to SHA-256 if no such algorithm is defined. The server ensure that
it selects a compatible PSK (if any) and cipher suite.

In TLS versions prior to TLS 1.3, the Server Name Indication (SNI) value was intended to be
associated with the session (), with the server being required to enforce
that the SNI value associated with the session matches the one specified in the resumption
handshake. However, in reality the implementations were not consistent on which of two
supplied SNI values they would use, leading to the consistency requirement being de facto

 struct {
 opaque identity<1..2^16-1>;
 uint32 obfuscated_ticket_age;
 } PskIdentity;

 opaque PskBinderEntry<32..255>;

 struct {
 PskIdentity identities<7..2^16-1>;
 PskBinderEntry binders<33..2^16-1>;
 } OfferedPsks;

 struct {
 select (Handshake.msg_type) {
 case client_hello: OfferedPsks;
 case server_hello: uint16 selected_identity;
 };
 } PreSharedKeyExtension;

SHOULD
MUST

MUST
MUST

Section 3 of [RFC6066]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 47

https://www.rfc-editor.org/rfc/rfc6066#section-3

enforced by the clients. In TLS 1.3, the SNI value is always explicitly specified in the resumption
handshake, and there is no need for the server to associate an SNI value with the ticket. Clients,
however, store the SNI with the PSK to fulfill the requirements of Section 4.6.1.

Implementor's note: When session resumption is the primary use case of PSKs, the most
straightforward way to implement the PSK/cipher suite matching requirements is to negotiate
the cipher suite first and then exclude any incompatible PSKs. Any unknown PSKs (e.g., ones not
in the PSK database or encrypted with an unknown key) simply be ignored. If no
acceptable PSKs are found, the server perform a non-PSK handshake if possible. If
backward compatibility is important, client-provided, externally established PSKs
influence cipher suite selection.

Prior to accepting PSK key establishment, the server validate the corresponding binder
value (see Section 4.2.11.2 below). If this value is not present or does not validate, the server

 abort the handshake. Servers attempt to validate multiple binders; rather,
they select a single PSK and validate solely the binder that corresponds to that PSK. See
Section 8.2 and Appendix F.6 for the security rationale for this requirement. To accept PSK key
establishment, the server sends a "pre_shared_key" extension indicating the selected identity.

Clients verify that the server's selected_identity is within the range supplied by the client,
that the server selected a cipher suite indicating a Hash associated with the PSK, and that a
server "key_share" extension is present if required by the ClientHello
"psk_key_exchange_modes" extension. If these values are not consistent, the client abort
the handshake with an "illegal_parameter" alert.

If the server supplies an "early_data" extension, the client verify that the server's
selected_identity is 0. If any other value is returned, the client abort the handshake with
an "illegal_parameter" alert.

The "pre_shared_key" extension be the last extension in the ClientHello (this facilitates
implementation as described below). Servers check that it is the last extension and
otherwise fail the handshake with an "illegal_parameter" alert.

SHOULD

SHOULD
SHOULD

SHOULD

MUST

MUST SHOULD NOT
SHOULD

MUST

MUST

MUST
MUST

MUST
MUST

4.2.11.1. Ticket Age
The client's view of the age of a ticket is the time since the receipt of the NewSessionTicket
message. Clients attempt to use tickets which have ages greater than the
"ticket_lifetime" value which was provided with the ticket. The "obfuscated_ticket_age" field of
each PskIdentity contains an obfuscated version of the ticket age formed by taking the age in
milliseconds and adding the "ticket_age_add" value that was included with the ticket (see Section
4.6.1), modulo 232. This addition prevents passive observers from correlating connections unless
tickets or key shares are reused. Note that the "ticket_lifetime" field in the NewSessionTicket
message is in seconds but the "obfuscated_ticket_age" is in milliseconds. Because ticket lifetimes
are restricted to a week, 32 bits is enough to represent any plausible age, even in milliseconds.

MUST NOT

RFC 9846 TLS January 2026

Rescorla Standards Track Page 48

4.2.11.2. PSK Binder
The PSK binder value forms a binding between a PSK and the current handshake, as well as a
binding between the handshake in which the PSK was generated (if via a NewSessionTicket
message) and the current handshake. Each entry in the binders list is computed as an HMAC
over a transcript hash (see Section 4.4.1) containing a partial ClientHello up to and including the
PreSharedKeyExtension.identities field. That is, it includes all of the ClientHello but not the
binders list itself. The length fields for the message (including the overall length, the length of
the extensions block, and the length of the "pre_shared_key" extension) are all set as if binders of
the correct lengths were present.

The PskBinderEntry is computed in the same way as the Finished message (Section 4.4.4) but
with the BaseKey being the binder_key derived via the key schedule from the corresponding PSK
which is being offered (see Section 7.1).

If the handshake includes a HelloRetryRequest, the initial ClientHello and HelloRetryRequest are
included in the transcript along with the new ClientHello. For instance, if the client sends
ClientHello1, its binder will be computed over:

Where Truncate() removes the binders list from the ClientHello. Note that this hash will be
computed using the hash associated with the PSK, as the client does not know which cipher suite
the server will select.

If the server responds with a HelloRetryRequest and the client then sends ClientHello2, its
binder will be computed over:

The full ClientHello1/ClientHello2 is included in all other handshake hash computations. Note
that in the first flight, Truncate(ClientHello1) is hashed directly, but in the second flight,
ClientHello1 is hashed and then reinjected as a "message_hash" message, as described in Section
4.4.1. Note that the "message_hash" will be hashed with the negotiated function, which may or
may not match the hash associated with the PSK. This is consistent with how the transcript is
calculated for the rest of the handshake.

 Transcript-Hash(Truncate(ClientHello1))

 Transcript-Hash(ClientHello1,
 HelloRetryRequest,
 Truncate(ClientHello2))

4.2.11.3. Processing Order
Clients are permitted to "stream" 0-RTT data until they receive the server's Finished, only then
sending the EndOfEarlyData message, followed by the rest of the handshake. In order to avoid
deadlocks, when accepting "early_data", servers process the client's ClientHello and then
immediately send their flight of messages, rather than waiting for the client's EndOfEarlyData
message before sending its ServerHello.

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 49

4.3. Server Parameters
The next two messages from the server, EncryptedExtensions and CertificateRequest, contain
information from the server that determines the rest of the handshake. These messages are
encrypted with keys derived from the server_handshake_traffic_secret.

extensions:

4.3.1. Encrypted Extensions

In all handshakes, the server send the EncryptedExtensions message immediately after
the ServerHello message. This is the first message that is encrypted under keys derived from the
server_handshake_traffic_secret.

The EncryptedExtensions message contains extensions that can be protected, i.e., any which are
not needed to establish the cryptographic context but which are not associated with individual
certificates. The client check EncryptedExtensions for the presence of any forbidden
extensions and if any are found abort the handshake with an "illegal_parameter" alert.

Structure of this message:

A list of extensions. For more information, see the table in Section 4.2.

MUST

MUST
MUST

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

certificate_request_context:

4.3.2. Certificate Request

A server which is authenticating with a certificate optionally request a certificate from the
client. This message, if sent, follow EncryptedExtensions.

Structure of this message:

An opaque string which identifies the certificate request and
which will be echoed in the client's Certificate message. The certificate_request_context
be unique within the scope of this connection (thus preventing replay of client
CertificateVerify messages). This field be zero length unless used for the post-
handshake authentication exchanges described in Section 4.6.2. When requesting post-
handshake authentication, the server make the context unpredictable to the client
(e.g., by randomly generating it) to prevent an attacker who has temporary access to the
client's private key from pre-computing valid CertificateVerify messages.

MAY
MUST

 struct {
 opaque certificate_request_context<0..2^8-1>;
 Extension extensions<0..2^16-1>;
 } CertificateRequest;

MUST

SHALL

SHOULD

RFC 9846 TLS January 2026

Rescorla Standards Track Page 50

extensions: A list of extensions describing the parameters of the certificate being requested.
The "signature_algorithms" extension be specified, and other extensions may optionally
be included if defined for this message. Clients ignore unrecognized extensions.

In prior versions of TLS, the CertificateRequest message carried a list of signature algorithms
and certificate authorities which the server would accept. In TLS 1.3, the former is expressed by
sending the "signature_algorithms" and optionally "signature_algorithms_cert" extensions. The
latter is expressed by sending the "certificate_authorities" extension (see Section 4.2.4).

Servers which are authenticating with a resumption PSK send the CertificateRequest
message in the main handshake, though they send it in post-handshake authentication (see
Section 4.6.2) provided that the client has sent the "post_handshake_auth" extension (see Section
4.2.6). In the absence of some other specification to the contrary, servers which are
authenticating with an external PSK send the CertificateRequest message in the main
handshake or request post-handshake authentication. provides an extension to
permit this but has received less analysis than this specification.

MUST
MUST

MUST NOT
MAY

MUST NOT
[RFC8773]

Certificate:

CertificateVerify:

Finished:

4.4. Authentication Messages
As discussed in Section 2, TLS generally uses a common set of messages for authentication, key
confirmation, and handshake integrity: Certificate, CertificateVerify, and Finished. (The PSK
binders also perform key confirmation, in a similar fashion.) These three messages are always
sent as the last messages in their handshake flight. The Certificate and CertificateVerify messages
are only sent under certain circumstances, as defined below. The Finished message is always sent
as part of the Authentication Block. These messages are encrypted under keys derived from the
[sender]_handshake_traffic_secret, except for post-handshake authentication.

The computations for the Authentication messages all uniformly take the following inputs:

The certificate and signing key to be used.
A Handshake Context consisting of the list of messages to be included in the transcript hash.
A Base Key to be used to compute a MAC key.

Based on these inputs, the messages then contain:

The certificate to be used for authentication, and any supporting certificates in the
chain. Note that certificate-based client authentication is not available in PSK handshake
flows (including 0-RTT).

A signature over the value Transcript-Hash(Handshake Context, Certificate).

A MAC over the value Transcript-Hash(Handshake Context, Certificate,
CertificateVerify) using a MAC key derived from the Base Key.

The following table defines the Handshake Context and MAC Base Key for each scenario:

•
•
•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 51

Mode Handshake Context Base Key

Server ClientHello ... later of
EncryptedExtensions/
CertificateRequest

server_handshake_traffic_secret

Client ClientHello ... later of server
Finished/EndOfEarlyData

client_handshake_traffic_secret

Post-
Handshake

ClientHello ... client Finished +
CertificateRequest

[sender]_application_traffic_secret_N

Table 2: Authentication Inputs

4.4.1. The Transcript Hash

Many of the cryptographic computations in TLS make use of a transcript hash. This value is
computed by hashing the concatenation of each included handshake message, including the
handshake message header carrying the handshake message type and length fields, but not
including record layer headers. I.e.,

As an exception to this general rule, when the server responds to a ClientHello with a
HelloRetryRequest, the value of ClientHello1 is replaced with a special synthetic handshake
message of handshake type "message_hash" containing Hash(ClientHello1). I.e.,

The reason for this construction is to allow the server to do a stateless HelloRetryRequest by
storing just the hash of ClientHello1 in the cookie, rather than requiring it to export the entire
intermediate hash state (see Section 4.2.2).

For concreteness, the transcript hash is always taken from the following sequence of handshake
messages, starting at the first ClientHello and including only those messages that were sent:
ClientHello, HelloRetryRequest, ClientHello, ServerHello, EncryptedExtensions, server
CertificateRequest, server Certificate, server CertificateVerify, server Finished, EndOfEarlyData,
client Certificate, client CertificateVerify, and client Finished.

In general, implementations can implement the transcript by keeping a running transcript hash
value based on the negotiated hash. Note, however, that subsequent post-handshake
authentications do not include each other, just the messages through the end of the main
handshake.

 Transcript-Hash(M1, M2, ... Mn) = Hash(M1 || M2 || ... || Mn)

 Transcript-Hash(ClientHello1, HelloRetryRequest, ... Mn) =
 Hash(message_hash || /* Handshake type */
 00 00 Hash.length || /* Handshake message length (bytes) */
 Hash(ClientHello1) || /* Hash of ClientHello1 */
 HelloRetryRequest || ... || Mn)

RFC 9846 TLS January 2026

Rescorla Standards Track Page 52

certificate_request_context:

certificate_list:

4.4.2. Certificate

This message conveys the endpoint's certificate chain to the peer.

The server send a Certificate message whenever the agreed-upon key exchange method
uses certificates for authentication (this includes all key exchange methods defined in this
document except PSK).

The client send a Certificate message if and only if the server has requested certificate-
based client authentication via a CertificateRequest message (Section 4.3.2). If the server
requests certificate-based client authentication but no suitable certificate is available, the client

 send a Certificate message containing no certificates (i.e., with the "certificate_list" field
having length 0). A Finished message be sent regardless of whether the Certificate message
is empty.

Structure of this message:

If this message is in response to a CertificateRequest, the value of
certificate_request_context in that message. Otherwise (in the case of server authentication),
this field be zero length.

A list (chain) of CertificateEntry structures, each containing a single certificate
and list of extensions.

MUST

MUST

MUST
MUST

 enum {
 X509(0),
 RawPublicKey(2),
 (255)
 } CertificateType;

 struct {
 select (certificate_type) {
 case RawPublicKey:
 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */
 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 case X509:
 opaque cert_data<1..2^24-1>;
 };
 Extension extensions<0..2^16-1>;
 } CertificateEntry;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 CertificateEntry certificate_list<0..2^24-1>;
 } Certificate;

SHALL

RFC 9846 TLS January 2026

Rescorla Standards Track Page 53

extensions: A list of extension values for the CertificateEntry. The "Extension" format is defined
in Section 4.2. Valid extensions for server certificates at present include the OCSP Status
extension and the SignedCertificateTimestamp extension ; future
extensions may be defined for this message as well. Extensions in the Certificate message
from the server correspond to ones from the ClientHello message. Extensions in the
Certificate message from the client correspond to extensions in the CertificateRequest
message from the server. If an extension applies to the entire chain, it be included in
the first CertificateEntry.

If the corresponding certificate type extension ("server_certificate_type" or
"client_certificate_type") was not negotiated in EncryptedExtensions, or the X.509 certificate type
was negotiated, then each CertificateEntry contains a DER-encoded X.509 certificate. The
sender's certificate come in the first CertificateEntry in the list. Each following certificate

 directly certify the one immediately preceding it. Because certificate validation requires
that trust anchors be distributed independently, a certificate that specifies a trust anchor be
omitted from the chain, provided that supported peers are known to possess any omitted
certificates.

Note: Prior to TLS 1.3, "certificate_list" ordering required each certificate to certify the one
immediately preceding it; however, some implementations allowed some flexibility. Servers
sometimes send both a current and deprecated intermediate for transitional purposes, and
others are simply configured incorrectly, but these cases can nonetheless be validated properly.
For maximum compatibility, all implementations be prepared to handle potentially
extraneous certificates and arbitrary orderings from any TLS version, with the exception of the
end-entity certificate which be first.

If the RawPublicKey certificate type was negotiated, then the certificate_list contain no
more than one CertificateEntry, which contains an ASN1_subjectPublicKeyInfo value as defined
in .

The OpenPGP certificate type be used with TLS 1.3.

The server's certificate_list always be non-empty. A client will send an empty
certificate_list if it does not have an appropriate certificate to send in response to the server's
authentication request.

[RFC6066] [RFC6962]

MUST
MUST

SHOULD

MUST
SHOULD

MAY

SHOULD

MUST

MUST

[RFC7250], Section 3

[RFC6091] MUST NOT

MUST

4.4.2.1. OCSP Status and SCT Extensions
 and provide extensions to negotiate the server sending OCSP responses to

the client. In TLS 1.2 and below, the server replies with an empty extension to indicate
negotiation of this extension and the OCSP information is carried in a CertificateStatus message.
In TLS 1.3, the server's OCSP information is carried in an extension in the CertificateEntry
containing the associated certificate. Specifically, the body of the "status_request" extension from
the server be a CertificateStatus structure as defined in , which is interpreted as
defined in .

[RFC6066] [RFC6961]

MUST [RFC6066]
[RFC6960]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 54

https://www.rfc-editor.org/rfc/rfc7250#section-3

Note: The status_request_v2 extension is deprecated. TLS 1.3 servers act
upon its presence or information in it when processing ClientHello messages; in particular, they

 send the status_request_v2 extension in the EncryptedExtensions, CertificateRequest,
or Certificate messages. TLS 1.3 servers be able to process ClientHello messages that
include it, as it be sent by clients that wish to use it in earlier protocol versions.

A server request that a client present an OCSP response with its certificate by sending an
empty "status_request" extension in its CertificateRequest message. If the client opts to send an
OCSP response, the body of its "status_request" extension be a CertificateStatus structure
as defined in .

Similarly, provides a mechanism for a server to send a Signed Certificate Timestamp
(SCT) as an extension in the ServerHello in TLS 1.2 and below. In TLS 1.3, the server's SCT
information is carried in an extension in the CertificateEntry.

[RFC6961] MUST NOT

MUST NOT
MUST

MAY

MAY

MUST
[RFC6066]

[RFC6962]

4.4.2.2. Certificate Selection
The following rules apply to the certificates sent by the client or server:

The certificate type be X.509v3 , unless explicitly negotiated otherwise (e.g.,
).

The end-entity certificate allow the key to be used for signing with a signature scheme
indicated in the peer's "signature_algorithms" extension (see Section 4.2.3). That is, the
digitalSignature bit be set if the Key Usage extension is present, and the public key
(with associated restrictions) be compatible with some supported signature scheme.
If the peer sent a "certificate_authorities" extension, at least one of the certificates in the
certificate chain be issued by one of the listed CAs.

The following rule additionally applies to certificates sent by the client:

If the CertificateRequest message contained a non-empty "oid_filters" extension, the end-
entity certificate match the extension OIDs that are recognized by the client, as
described in Section 4.2.5.

The following rule additionally applies to certificates sent by the server:

The "server_name" extension is used to guide certificate selection. As servers
require the presence of the "server_name" extension, clients send this extension
when the server is identified by name.

All certificates provided by the sender be signed by a signature algorithm advertised by the
peer, if it is able to provide such a chain (see Section 4.2.3). Certificates that are self-signed or
certificates that are expected to be trust anchors are not validated as part of the chain and
therefore be signed with any algorithm.

• MUST [RFC5280]
[RFC7250]

• MUST

MUST
MUST

•
SHOULD

•
MUST

• [RFC6066] MAY
SHOULD

MUST

MAY

RFC 9846 TLS January 2026

Rescorla Standards Track Page 55

If the sender is the server, and the server cannot produce a certificate chain that is signed only
via the indicated supported algorithms, then it continue the handshake by sending a
certificate chain of its choice that may include algorithms that are not known to be supported by
the client. This fallback chain use the deprecated SHA-1 hash, unless the client
specifically advertises that it is willing to accept SHA-1.

If the sender is the client, the client use a fallback chain as above or continue the
handshake anonymously.

If the receiver cannot construct an acceptable chain using the provided certificates and decides
to abort the handshake, then it abort the handshake with an appropriate certificate-
related alert (by default, "unsupported_certificate"; see Section 6.2 for more information).

If the sender has multiple certificates, it chooses one of them based on the above-mentioned
criteria (in addition to other criteria, such as transport-layer endpoint, local configuration, and
preferences).

SHOULD

MUST NOT

MAY

MUST

4.4.2.3. Receiving a Certificate Message
In general, detailed certificate validation procedures are out of scope for TLS (see).
This section provides TLS-specific requirements.

If the server supplies an empty Certificate message, the client abort the handshake with a
"decode_error" alert.

If the client does not send any certificates (i.e., it sends an empty Certificate message), the server
 at its discretion either continue the handshake without client authentication, or abort the

handshake with a "certificate_required" alert. Also, if some aspect of the certificate chain was
unacceptable (e.g., it was not signed by a known, trusted CA), the server at its discretion
either continue the handshake (considering the client unauthenticated) or abort the handshake.

Any endpoint receiving any certificate which it would need to validate using any signature
algorithm using an MD5 hash abort the handshake with a "bad_certificate" alert. SHA-1 is
deprecated and it is that any endpoint receiving any certificate which it would
need to validate using any signature algorithm using a SHA-1 hash abort the handshake with a
"bad_certificate" alert. For clarity, this means that endpoints can accept these algorithms for
certificates that are self-signed or are trust anchors.

All endpoints are to transition to SHA-256 or better as soon as possible to
maintain interoperability with implementations currently in the process of phasing out SHA-1
support.

Note that a certificate containing a key for one signature algorithm be signed using a
different signature algorithm (for instance, an RSA key signed with an ECDSA key).

[RFC5280]

MUST

MAY

MAY

MUST
RECOMMENDED

RECOMMENDED

MAY

RFC 9846 TLS January 2026

Rescorla Standards Track Page 56

4.4.3. Certificate Verify

This message is used to provide explicit proof that an endpoint possesses the private key
corresponding to its certificate. The CertificateVerify message also provides integrity for the
handshake up to this point. Servers send this message when authenticating via a
certificate. Clients send this message whenever authenticating via a certificate (i.e., when
the Certificate message is non-empty). When sent, this message appear immediately after
the Certificate message and immediately prior to the Finished message.

Structure of this message:

The algorithm field specifies the signature algorithm used (see Section 4.2.3 for the definition of
this type). The signature is a digital signature using that algorithm. The content that is covered
under the signature is the hash output as described in Section 4.4.1, namely:

The digital signature is then computed over the concatenation of:

A string that consists of octet 32 (0x20) repeated 64 times
The context string (defined below)
A single 0 byte which serves as the separator
The content to be signed

This structure is intended to prevent an attack on previous versions of TLS in which the
ServerKeyExchange format meant that attackers could obtain a signature of a message with a
chosen 32-byte prefix (ClientHello.random). The initial 64-byte pad clears that prefix along with
the server-controlled ServerHello.random.

The context string for a server signature is "TLS 1.3, server CertificateVerify". The context string
for a client signature is "TLS 1.3, client CertificateVerify". It is used to provide separation
between signatures made in different contexts, helping against potential cross-protocol attacks.

For example, if the transcript hash was 32 bytes of 01 (this length would make sense for
SHA-256), the content covered by the digital signature for a server CertificateVerify would be:

MUST
MUST

MUST

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 Transcript-Hash(Handshake Context, Certificate)

•
•
•
•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 57

On the sender side, the process for computing the signature field of the CertificateVerify message
takes as input:

The content covered by the digital signature
The private signing key corresponding to the certificate sent in the previous message

If the CertificateVerify message is sent by a server, the signature algorithm be one offered
in the client's "signature_algorithms" extension unless no valid certificate chain can be produced
without unsupported algorithms (see Section 4.2.3).

If sent by a client, the signature algorithm used in the signature be one of those present in
the supported_signature_algorithms field of the "signature_algorithms" extension in the
CertificateRequest message.

In addition, the signature algorithm be compatible with the key in the sender's end-entity
certificate. RSA signatures use an RSASSA-PSS algorithm, regardless of whether RSASSA-
PKCS1-v1_5 algorithms appear in "signature_algorithms". The SHA-1 algorithm be
used in any signatures of CertificateVerify messages. All SHA-1 signature algorithms in this
specification are defined solely for use in legacy certificates and are not valid for
CertificateVerify signatures.

The receiver of a CertificateVerify message verify the signature field. The verification
process takes as input:

The content covered by the digital signature
The public key contained in the end-entity certificate found in the associated Certificate
message
The digital signature received in the signature field of the CertificateVerify message

If the verification fails, the receiver terminate the handshake with a "decrypt_error" alert.

 20
 20
 544c5320312e332c207365727665722043657274696669636174655665726966
 79
 00
 01

•
•

MUST

MUST

MUST
MUST

MUST NOT

MUST

•
•

•

MUST

4.4.4. Finished

The Finished message is the final message in the Authentication Block. It is essential for
providing authentication of the handshake and of the computed keys.

Recipients of Finished messages verify that the contents are correct and if incorrect
terminate the connection with a "decrypt_error" alert.

MUST MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 58

Once a side has sent its Finished message and has received and validated the Finished message
from its peer, it may begin to send and receive Application Data over the connection. There are
two settings in which it is permitted to send data prior to receiving the peer's Finished:

Clients sending 0-RTT data as described in Section 4.2.10.
Servers send data after sending their first flight, but because the handshake is not yet
complete, they have no assurance of either the peer's identity or its liveness (i.e., the
ClientHello might have been replayed).

The key used to compute the Finished message is computed from the Base Key defined in Section
4.4 using HKDF (see Section 7.1). Specifically:

Structure of this message:

The verify_data value is computed as follows:

Only included if present.

HMAC uses the Hash algorithm for the handshake. As noted above, the HMAC input
can generally be implemented by a running hash, i.e., just the handshake hash at this point.

In previous versions of TLS, the verify_data was always 12 octets long. In TLS 1.3, it is the size of
the HMAC output for the Hash used for the handshake.

Note: Alerts and any other non-handshake record types are not handshake messages and are not
included in the hash computations.

Any records following a Finished message be encrypted under the appropriate application
traffic key as described in Section 7.2. In particular, this includes any alerts sent by the server in
response to client Certificate and CertificateVerify messages.

1.
2. MAY

finished_key =
 HKDF-Expand-Label(BaseKey, "finished", "", Hash.length)

 struct {
 opaque verify_data[Hash.length];
 } Finished;

 verify_data =
 HMAC(finished_key,
 Transcript-Hash(Handshake Context,
 Certificate*, CertificateVerify*))

•

[RFC2104]

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 59

4.5. End of Early Data

If the server sent an "early_data" extension in EncryptedExtensions, the client send an
EndOfEarlyData message after receiving the server Finished. If the server does not send an
"early_data" extension in EncryptedExtensions, then the client send an
EndOfEarlyData message. This message indicates that all 0-RTT application_data messages, if any,
have been transmitted and that the following records are protected under handshake traffic
keys. Servers send this message, and clients receiving it terminate the
connection with an "unexpected_message" alert. This message is encrypted under keys derived
from the client_early_traffic_secret.

 struct {} EndOfEarlyData;

MUST

MUST NOT

MUST NOT MUST

4.6. Post-Handshake Messages
TLS also allows other messages to be sent after the main handshake. These messages use a
handshake content type and are encrypted under the appropriate application traffic key.

4.6.1. New Session Ticket Message

If the client's hello contained a suitable "psk_key_exchange_modes" extension at any time after
the server has received the client Finished message, it send a NewSessionTicket message.
This message creates a unique association between the ticket value and a secret PSK derived
from the resumption secret (see Section 7).

The client use this PSK for future handshakes by including the ticket value in the
"pre_shared_key" extension in its ClientHello (Section 4.2.11). Clients which receive a
NewSessionTicket message but do not support resumption silently ignore this message.
Resumption be done while the original connection is still open. Servers send multiple
tickets on a single connection, either immediately after each other or after specific events (see
Appendix C.4). For instance, the server might send a new ticket after post-handshake
authentication thus encapsulating the additional client authentication state. Multiple tickets are
useful for clients for a variety of purposes, including:

Opening multiple parallel HTTP connections.
Performing connection racing across interfaces and address families via (for example)
Happy Eyeballs or related techniques.

Any ticket only be resumed with a cipher suite that has the same KDF hash algorithm as
that used to establish the original connection.

Clients only resume if the new SNI value is valid for the server certificate presented in the
original session, and only resume if the SNI value matches the one used in the original
session. The latter is a performance optimization: normally, there is no reason to expect that

MAY

MAY

MUST
MAY MAY

•
•

[RFC8305]

MUST

MUST
SHOULD

RFC 9846 TLS January 2026

Rescorla Standards Track Page 60

ticket_lifetime:

ticket_age_add:

ticket_nonce:

ticket:

extensions:

different servers covered by a single certificate would be able to accept each other's tickets;
hence, attempting resumption in that case would waste a single-use ticket. If such an indication
is provided (externally or by any other means), clients resume with a different SNI value.

On resumption, if reporting an SNI value to the calling application, implementations use
the value sent in the resumption ClientHello rather than the value sent in the previous session.
Note that if a server implementation declines all PSK identities with different SNI values, these
two values are always the same.

Note: Although the resumption secret depends on the client's second flight, a server which does
not request certificate-based client authentication compute the remainder of the transcript
independently and then send a NewSessionTicket immediately upon sending its Finished rather
than waiting for the client Finished. This might be appropriate in cases where the client is
expected to open multiple TLS connections in parallel and would benefit from the reduced
overhead of a resumption handshake, for example.

Indicates the lifetime in seconds as a 32-bit unsigned integer in network byte
order from the time of ticket issuance. Servers use any value greater than 604800
seconds (7 days). The value of zero indicates that the ticket should be discarded immediately.
Clients use tickets for longer than 7 days after issuance, regardless of the
ticket_lifetime, and delete tickets earlier based on local policy. A server treat a ticket
as valid for a shorter period of time than what is stated in the ticket_lifetime.

A securely generated, random 32-bit value that is used to obscure the age of the
ticket that the client includes in the "pre_shared_key" extension. The client-side ticket age is
added to this value modulo 232 to obtain the value that is transmitted by the client. The server

 generate a fresh value for each ticket it sends.

A per-ticket value that is unique across all tickets issued on this connection.

The value of the ticket to be used as the PSK identity. The ticket itself is an opaque label.
It be either a database lookup key or a self-encrypted and self-authenticated value.

A list of extension values for the ticket. The "Extension" format is defined in Section
4.2. Clients ignore unrecognized extensions.

The sole extension currently defined for NewSessionTicket is "early_data", indicating that the
ticket may be used to send 0-RTT data (Section 4.2.10). It contains the following value:

MAY

MUST

MAY

 struct {
 uint32 ticket_lifetime;
 uint32 ticket_age_add;
 opaque ticket_nonce<0..255>;
 opaque ticket<1..2^16-1>;
 Extension extensions<0..2^16-1>;
 } NewSessionTicket;

MUST NOT

MUST NOT
MAY MAY

MUST

MAY

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 61

max_early_data_size: The maximum amount of 0-RTT data that the client is allowed to send
when using this ticket, in bytes. Only Application Data payload (i.e., plaintext but not padding
or the inner content type byte) is counted. A server receiving more than max_early_data_size
bytes of 0-RTT data terminate the connection with an "unexpected_message" alert.
Note that servers that reject early data due to lack of cryptographic material will be unable to
differentiate padding from content, so clients depend on being able to send
large quantities of padding in early data records.

The PSK associated with the ticket is computed as:

Because the ticket_nonce value is distinct for each NewSessionTicket message, a different PSK
will be derived for each ticket.

Note that in principle it is possible to continue issuing new tickets which indefinitely extend the
lifetime of the keying material originally derived from an initial non-PSK handshake (which was
most likely tied to the peer's certificate). It is that implementations place limits
on the total lifetime of such keying material; these limits should take into account the lifetime of
the peer's certificate, the likelihood of intervening revocation, and the time since the peer's
online CertificateVerify signature.

SHOULD

SHOULD NOT

 HKDF-Expand-Label(resumption_secret,
 "resumption", ticket_nonce, Hash.length)

RECOMMENDED

4.6.2. Post-Handshake Authentication

When the client has sent the "post_handshake_auth" extension (see Section 4.2.6), a server
request certificate-based client authentication at any time after the handshake has completed by
sending a CertificateRequest message. The client respond with the appropriate
Authentication messages (see Section 4.4). If the client chooses to authenticate, it send
Certificate, CertificateVerify, and Finished. If it declines, it send a Certificate message
containing no certificates followed by Finished. All of the client's messages for a given response

 appear consecutively on the wire with no intervening messages of other type or from
other responses.

A client that receives a CertificateRequest message without having sent the
"post_handshake_auth" extension send an "unexpected_message" fatal alert.

Note: Because certificate-based client authentication could involve prompting the user, servers
 be prepared for some delay, including receiving an arbitrary number of other messages

between sending the CertificateRequest and receiving a response. In addition, clients which
receive multiple CertificateRequests in close succession respond to them in a different
order than they were received (the certificate_request_context value allows the server to
disambiguate the responses).

MAY

MUST
MUST

MUST

MUST

MUST

MUST

MAY

RFC 9846 TLS January 2026

Rescorla Standards Track Page 62

request_update:

4.6.3. Key and Initialization Vector Update

The KeyUpdate handshake message is used to indicate that the sender is updating its sending
cryptographic keys. This message can be sent by either peer after it has sent a Finished message.
Implementations that receive a KeyUpdate message prior to receiving a Finished message
terminate the connection with an "unexpected_message" alert. After sending a KeyUpdate
message, the sender send all its traffic using the next generation of keys, computed as
described in Section 7.2. Upon receiving a KeyUpdate, the receiver update its receiving
keys.

Indicates whether the recipient of the KeyUpdate should respond with its own
KeyUpdate. If an implementation receives any other value, it terminate the connection
with an "illegal_parameter" alert.

If the request_update field is set to "update_requested", then the receiver send a
KeyUpdate of its own with request_update set to "update_not_requested" prior to sending its next
Application Data record. This mechanism allows either side to force an update to the entire
connection, but causes an implementation which receives multiple KeyUpdates while it is silent
to respond with a single update. Until receiving a subsequent KeyUpdate from the peer, the
sender send another KeyUpdate with request_update set to "update_requested".

Note that implementations may receive an arbitrary number of messages between sending a
KeyUpdate with request_update set to "update_requested" and receiving the peer's KeyUpdate,
including unrelated KeyUpdates, because those messages may already be in flight. However,
because send and receive keys are derived from independent traffic secrets, retaining the
receive traffic secret does not threaten the forward secrecy of data sent before the sender
changed keys.

If implementations independently send their own KeyUpdates with request_update set to
"update_requested", and they cross in flight, then each side will also send a response, with the
result that each side increments by two generations.

Both sender and receiver encrypt their KeyUpdate messages with the old keys.
Additionally, both sides enforce that a KeyUpdate with the old key is received before
accepting any messages encrypted with the new key. Failure to do so may allow message
truncation attacks.

MUST

SHALL
MUST

 enum {
 update_not_requested(0), update_requested(1), (255)
 } KeyUpdateRequest;

 struct {
 KeyUpdateRequest request_update;
 } KeyUpdate;

MUST

MUST

MUST NOT

MUST
MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 63

With a 128-bit key as in AES-128, rekeying 264 times has a high probability of key reuse within a
given connection. Note that even if the key repeats, the IV is also independently generated, so
the chance of a joint key/IV collision is much lower. To provide an extra margin of security,
sending implementations allow the epoch -- and hence the number of key updates --
to exceed 248-1. In order to allow this value to be changed later -- for instance for ciphers with
more than 128-bit keys -- receiving implementations enforce this rule. If a sending
implementation receives a KeyUpdate with request_update set to "update_requested", it

 send its own KeyUpdate if that would cause it to exceed these limits and instead
ignore the "update_requested" flag. This may result in an eventual need to terminate the
connection when the limits described in Section 5.5 are reached.

MUST NOT

MUST NOT
MUST

NOT SHOULD

5. Record Protocol
The TLS record protocol takes messages to be transmitted, fragments the data into manageable
blocks, protects the records, and transmits the result. Received data is verified, decrypted,
reassembled, and then delivered to higher-level clients.

TLS records are typed, which allows multiple higher-level protocols to be multiplexed over the
same record layer. This document specifies four content types: handshake, application_data,
alert, and change_cipher_spec. The change_cipher_spec record is used only for compatibility
purposes (see Appendix E.4).

An implementation may receive an unencrypted record of type change_cipher_spec consisting
of the single byte value 0x01 at any time after the first ClientHello message has been sent or
received and before the peer's Finished message has been received and simply drop it
without further processing. Note that this record may appear at a point at the handshake where
the implementation is expecting protected records, and so it is necessary to detect this condition
prior to attempting to deprotect the record. An implementation which receives any other
change_cipher_spec value or which receives a protected change_cipher_spec record abort
the handshake with an "unexpected_message" alert. If an implementation detects a
change_cipher_spec record received before the first ClientHello message or after the peer's
Finished message, it be treated as an unexpected record type (though stateless servers
may not be able to distinguish these cases from allowed cases).

Implementations send record types not defined in this document unless negotiated by
some extension. If a TLS implementation receives an unexpected record type, it terminate
the connection with an "unexpected_message" alert. New record content type values are
assigned by IANA in the TLS ContentType registry as described in Section 11.

MUST

MUST

MUST

MUST NOT
MUST

5.1. Record Layer
The record layer fragments information blocks into TLSPlaintext records carrying data in
chunks of 214 bytes or less. Message boundaries are handled differently depending on the
underlying ContentType. Any future content types specify appropriate rules. Note that
these rules are stricter than what was enforced in TLS 1.2.

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 64

type:

Handshake messages be coalesced into a single TLSPlaintext record or fragmented across
several records, provided that:

Handshake messages be interleaved with other record types. That is, if a
handshake message is split over two or more records, there be any other records
between them.
Handshake messages span key changes. Implementations verify that all
messages immediately preceding a key change align with a record boundary; if not, then
they terminate the connection with an "unexpected_message" alert. Because the
ClientHello, EndOfEarlyData, ServerHello, Finished, and KeyUpdate messages can
immediately precede a key change, implementations send these messages in
alignment with a record boundary.

Implementations send zero-length fragments of Handshake types, even if those
fragments contain padding.

Alert messages (Section 6) be fragmented across records, and multiple alert messages
 be coalesced into a single TLSPlaintext record. In other words, a record with an Alert

type contain exactly one message.

Application Data messages contain data that is opaque to TLS. Application Data messages are
always protected. Zero-length fragments of Application Data (i.e., TLSInnerPlaintext records of
type application_data with zero-length content) be sent, as they are potentially useful as a
traffic analysis countermeasure. Application Data fragments be split across multiple
records or coalesced into a single record.

The higher-level protocol used to process the enclosed fragment.

MAY

• MUST NOT
MUST NOT

• MUST NOT MUST

MUST

MUST

MUST NOT

MUST NOT
MUST NOT

MUST

MAY
MAY

 enum {
 invalid(0),
 change_cipher_spec(20),
 alert(21),
 handshake(22),
 application_data(23),
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 65

legacy_record_version:

length:

fragment

 be set to 0x0303 for all records generated by a TLS 1.3
implementation other than an initial ClientHello (i.e., one not generated after a
HelloRetryRequest), where it also be 0x0301 for compatibility purposes. This field is
deprecated and be ignored for all purposes. Previous versions of TLS would use other
values in this field under some circumstances.

The length (in bytes) of the following TLSPlaintext.fragment. The length
exceed 214 bytes. An endpoint that receives a record that exceeds this length terminate
the connection with a "record_overflow" alert.

The data being transmitted. This value is transparent and is treated as an
independent block to be dealt with by the higher-level protocol specified by the type field.

This document describes TLS 1.3, which uses the version 0x0304. This version value is historical,
deriving from the use of 0x0301 for TLS 1.0 and 0x0300 for SSL 3.0. To maximize backward
compatibility, a record containing an initial ClientHello have version 0x0301 (reflecting
TLS 1.0) and a record containing a second ClientHello or a ServerHello have version
0x0303 (reflecting TLS 1.2). When negotiating prior versions of TLS, endpoints follow the
procedure and requirements provided in Appendix E.

When record protection has not yet been engaged, TLSPlaintext structures are written directly
onto the wire. Once record protection has started, TLSPlaintext records are protected and sent as
described in the following section. Note that Application Data records be written to
the wire unprotected (see Section 2 for details).

MUST

MAY
MUST

MUST NOT
MUST

SHOULD
MUST

MUST NOT

5.2. Record Payload Protection
The record protection functions translate a TLSPlaintext structure into a TLSCiphertext
structure. The deprotection functions reverse the process. In TLS 1.3, as opposed to previous
versions of TLS, all ciphers are modeled as "Authenticated Encryption with Associated
Data" (AEAD) . AEAD functions provide a unified encryption and authentication
operation which turns plaintext into authenticated ciphertext and back again. Each encrypted
record consists of a plaintext header followed by an encrypted body, which itself contains a type
and optional padding.

[RFC5116]

 struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } TLSInnerPlaintext;

 struct {
 ContentType opaque_type = application_data; /* 23 */
 ProtocolVersion legacy_record_version = 0x0303; /* TLS v1.2 */
 uint16 length;
 opaque encrypted_record[TLSCiphertext.length];
 } TLSCiphertext;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 66

content:

type:

zeros:

opaque_type:

legacy_record_version:

length:

encrypted_record:

The TLSPlaintext.fragment value, containing the byte encoding of a handshake or an
alert message, or the raw bytes of the application's data to send.

The TLSPlaintext.type value containing the content type of the record.

An arbitrary-length run of zero-valued bytes may appear in the cleartext after the type
field. This provides an opportunity for senders to pad any TLS record by a chosen amount as
long as the total stays within record size limits. See Section 5.4 for more details.

The outer opaque_type field of a TLSCiphertext record is always set to the value
23 (application_data) for outward compatibility with middleboxes accustomed to parsing
previous versions of TLS. The actual content type of the record is found in
TLSInnerPlaintext.type after decryption.

The legacy_record_version field is always 0x0303. TLS 1.3
TLSCiphertexts are not generated until after TLS 1.3 has been negotiated, so there are no
historical compatibility concerns where other values might be received. Note that the
handshake protocol, including the ClientHello and ServerHello messages, authenticates the
protocol version, so this value is redundant.

The length (in bytes) of the following TLSCiphertext.encrypted_record, which is the sum
of the lengths of the content and the padding, plus one for the inner content type, plus any
expansion added by the AEAD algorithm. The length exceed 214 + 256 bytes. An
endpoint that receives a record that exceeds this length terminate the connection with
a "record_overflow" alert.

The AEAD-encrypted form of the serialized TLSInnerPlaintext structure.

AEAD algorithms take as input a single key, a nonce, a plaintext, and "additional data" to be
included in the authentication check, as described in . The key is either
the client_write_key or the server_write_key, the nonce is derived from the sequence number
and the client_write_iv or server_write_iv (see Section 5.3), and the additional data input is the
record header. I.e.,

The plaintext input to the AEAD algorithm is the encoded TLSInnerPlaintext structure.
Derivation of traffic keys is defined in Section 7.3.

The AEAD output consists of the ciphertext output from the AEAD encryption operation. The
length of the plaintext is greater than the corresponding TLSPlaintext.length due to the inclusion
of TLSInnerPlaintext.type and any padding supplied by the sender. The length of the AEAD
output will generally be larger than the plaintext, but by an amount that varies with the AEAD
algorithm. Since the ciphers might incorporate padding, the amount of overhead could vary
with different lengths of plaintext. Symbolically,

MUST NOT
MUST

Section 2.1 of [RFC5116]

 additional_data = TLSCiphertext.opaque_type ||
 TLSCiphertext.legacy_record_version ||
 TLSCiphertext.length

RFC 9846 TLS January 2026

Rescorla Standards Track Page 67

https://www.rfc-editor.org/rfc/rfc5116#section-2.1

The encrypted_record field of TLSCiphertext is set to AEADEncrypted.

To decrypt and verify, the cipher takes as input the key, nonce, additional data, and the
AEADEncrypted value. The output is either the plaintext or an error indicating that the
decryption failed. There is no separate integrity check. Symbolically,

If the decryption fails, the receiver terminate the connection with a "bad_record_mac"
alert.

An AEAD algorithm used in TLS 1.3 produce an expansion greater than 255 octets. An
endpoint that receives a record from its peer with TLSCiphertext.length larger than 214 + 256
octets terminate the connection with a "record_overflow" alert. This limit is derived from
the maximum TLSInnerPlaintext length of 214 octets + 1 octet for ContentType + the maximum
AEAD expansion of 255 octets.

 AEADEncrypted =
 AEAD-Encrypt(write_key, nonce, additional_data, plaintext)

 plaintext of encrypted_record =
 AEAD-Decrypt(peer_write_key, nonce, additional_data, AEADEncrypted)

MUST

MUST NOT

MUST

5.3. Per-Record Nonce
A 64-bit sequence number is maintained separately for reading and writing records. The
appropriate sequence number is incremented by one after reading or writing each record. Each
sequence number is set to zero at the beginning of a connection and whenever the key is
changed; the first record transmitted under a particular traffic key use sequence number 0.

Because the size of sequence numbers is 64-bit, they should not wrap. If a TLS implementation
would need to wrap a sequence number, it either rekey (Section 4.6.3) or terminate the
connection.

Each AEAD algorithm will specify a range of possible lengths for the per-record nonce, from
N_MIN bytes to N_MAX bytes of input . The length of the TLS per-record nonce
(iv_length) is set to the larger of 8 bytes and N_MIN for the AEAD algorithm (see

). An AEAD algorithm where N_MAX is less than 8 bytes be used with TLS.
The per-record nonce for the AEAD construction is formed as follows:

The 64-bit record sequence number is encoded in network byte order and padded to the left
with zeros to iv_length.
The padded sequence number is XORed with either the static client_write_iv or
server_write_iv (depending on the role).

The resulting quantity (of length iv_length) is used as the per-record nonce.

MUST

MUST

[RFC5116]
[RFC5116],

Section 4 MUST NOT

1.

2.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 68

https://www.rfc-editor.org/rfc/rfc5116#section-4

Note: This is a different construction from that in TLS 1.2, which specified a partially explicit
nonce.

5.4. Record Padding
All encrypted TLS records can be padded to inflate the size of the TLSCiphertext. This allows the
sender to hide the size of the traffic from an observer.

When generating a TLSCiphertext record, implementations choose to pad. An unpadded
record is just a record with a padding length of zero. Padding is a string of zero-valued bytes
appended to the ContentType field before encryption. Implementations set the padding
octets to all zeros before encrypting.

Application Data records may contain a zero-length TLSInnerPlaintext.content if the sender
desires. This permits generation of plausibly sized cover traffic in contexts where the presence
or absence of activity may be sensitive. Implementations send Handshake and Alert
records that have a zero-length TLSInnerPlaintext.content; if such a message is received, the
receiving implementation terminate the connection with an "unexpected_message" alert.

The padding sent is automatically verified by the record protection mechanism; upon successful
decryption of a TLSCiphertext.encrypted_record, the receiving implementation scans the field
from the end toward the beginning until it finds a non-zero octet. This non-zero octet is the
content type of the message. This padding scheme was selected because it allows padding of any
encrypted TLS record by an arbitrary size (from zero up to TLS record size limits) without
introducing new content types. The design also enforces all-zero padding octets, which allows
for quick detection of padding errors.

Implementations limit their scanning to the cleartext returned from the AEAD decryption.
If a receiving implementation does not find a non-zero octet in the cleartext, it terminate
the connection with an "unexpected_message" alert.

The presence of padding does not change the overall record size limitations: the full encoded
TLSInnerPlaintext exceed 214 + 1 octets. If the maximum fragment length is reduced --
as for example by the record_size_limit extension from -- then the reduced limit
applies to the full plaintext, including the content type and padding.

Selecting a padding policy that suggests when and how much to pad is a complex topic and is
beyond the scope of this specification. If the application-layer protocol on top of TLS has its own
padding, it may be preferable to pad Application Data TLS records within the application layer.
Padding for encrypted Handshake or Alert records must still be handled at the TLS layer,
though. Later documents may define padding selection algorithms or define a padding policy
request mechanism through TLS extensions or some other means.

MAY

MUST

MUST NOT

MUST

MUST
MUST

MUST NOT
[RFC8449]

5.5. Limits on Key Usage
There are cryptographic limits on the amount of plaintext which can be safely encrypted under
a given set of keys. provides an analysis of these limits under the assumption that
the underlying primitive (AES or ChaCha20) has no weaknesses. Implementations either

[AEAD-LIMITS]
MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 69

close the connection or do a key update as described in Section 4.6.3 prior to reaching these
limits. Note that it is not possible to perform a KeyUpdate for early data; therefore,
implementations exceed the limits when sending early data. Receiving
implementations enforce these limits, as future analyses may result in updated
values.

For AES-GCM, up to 224.5 full-size records (about 24 million) may be encrypted on a given
connection while keeping a safety margin of approximately 2-57 for Authenticated Encryption
(AE) security. For ChaCha20/Poly1305, the record sequence number would wrap before the
safety limit is reached.

MUST NOT
SHOULD NOT

6. Alert Protocol
TLS provides an Alert content type to indicate closure information and errors. Like other
messages, alert messages are encrypted as specified by the current connection state.

Alert messages convey a description of the alert and a legacy field that conveyed the severity
level of the message in previous versions of TLS. Alerts are divided into two classes: closure
alerts and error alerts. In TLS 1.3, the severity is implicit in the type of alert being sent, and the
"level" field can safely be ignored. The "close_notify" alert is used to indicate orderly closure of
one direction of the connection. Upon receiving such an alert, the TLS implementation
indicate end-of-data to the application.

Error alerts indicate abortive closure of the connection (see Section 6.2). Upon receiving an error
alert, the TLS implementation indicate an error to the application and allow
any further data to be sent or received on the connection. Servers and clients forget the
secret values and keys established in failed connections, with the exception of the PSKs
associated with session tickets, which be discarded if possible.

All the alerts listed in Section 6.2 be sent with AlertLevel=fatal and be treated as
error alerts when received regardless of the AlertLevel in the message. Unknown Alert types

 be treated as error alerts.

Note: TLS defines two generic alerts (see Section 6) to use upon failure to parse a message. Peers
which receive a message which cannot be parsed according to the syntax (e.g., have a length
extending beyond the message boundary or contain an out-of-range length) terminate the
connection with a "decode_error" alert. Peers which receive a message which is syntactically
correct but semantically invalid (e.g., a DHE share of p - 1, or an invalid enum) terminate
the connection with an "illegal_parameter" alert.

SHOULD

SHOULD MUST NOT
MUST

SHOULD

MUST MUST

MUST

MUST

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 70

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 record_overflow(22),
 handshake_failure(40),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 inappropriate_fallback(86),
 user_canceled(90),
 missing_extension(109),
 unsupported_extension(110),
 unrecognized_name(112),
 bad_certificate_status_response(113),
 unknown_psk_identity(115),
 certificate_required(116),
 general_error(117),
 no_application_protocol(120),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

close_notify:

user_canceled:

6.1. Closure Alerts
The client and the server must share knowledge that the connection is ending in order to avoid a
truncation attack.

This alert notifies the recipient that the sender will not send any more messages
on this connection. Any data received after a closure alert has been received be
ignored. This alert be sent with AlertLevel=warning.

This alert notifies the recipient that the sender is canceling the handshake for
some reason unrelated to a protocol failure. If a user cancels an operation after the
handshake is complete, just closing the connection by sending a "close_notify" is more

MUST
MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 71

appropriate. This alert be followed by a "close_notify". This alert generally has
AlertLevel=warning. Receiving implementations continue to read data from the peer
until a "close_notify" is received, though they log or otherwise record them.

Either party initiate a close of its write side of the connection by sending a "close_notify"
alert. If a transport-level close is received prior to a "close_notify", the receiver cannot know that
all the data that was sent has been received.

Each party send a "close_notify" alert before closing its write side of the connection, unless
it has already sent some error alert. This does not have any effect on its read side of the
connection. Note that this is a change from versions of TLS prior to TLS 1.3 in which
implementations were required to react to a "close_notify" by discarding pending writes and
sending an immediate "close_notify" alert of their own. That previous requirement could cause
truncation in the read side. Both parties need not wait to receive a "close_notify" alert before
closing their read side of the connection, though doing so would introduce the possibility of
truncation.

Application protocols choose to flush their send buffers and immediately send a
close_notify upon receiving a close_notify, but this allows an attacker to influence the data that
the peer receives by delaying the close_notify or by delaying the transport-level delivery of the
application's packets. These issues can be addressed at the application layer, for instance by
ignoring packets received after transmitting the close_notify.

If the application protocol using TLS provides that any data may be carried over the underlying
transport after the TLS connection is closed, the TLS implementation receive a
"close_notify" alert before indicating end-of-data to the application layer. No part of this
standard should be taken to dictate the manner in which a usage profile for TLS manages its
data transport, including when connections are opened or closed.

Note: It is assumed that closing the write side of a connection reliably delivers pending data
before destroying the transport.

MUST
SHOULD

MAY

MAY

MUST

MAY

MUST

6.2. Error Alerts
Error handling in TLS is very simple. When an error is detected, the detecting party sends a
message to its peer. Upon transmission or receipt of a fatal alert message, both parties
immediately close the connection.

Whenever an implementation encounters a fatal error condition, it send an appropriate
fatal alert and close the connection without sending or receiving any additional data.
Throughout this specification, when the phrases "terminate the connection" and "abort the
handshake" are used without a specific alert it means that the implementation send the
alert indicated by the descriptions below. The phrases "terminate the connection with an X alert"
and "abort the handshake with an X alert" mean that the implementation send alert X if it
sends any alert. All alerts defined below in this section, as well as all unknown alerts, are
universally considered fatal as of TLS 1.3 (see Section 6). The implementation provide a
way to facilitate logging the sending and receiving of alerts.

MUST

SHOULD
MUST

SHOULD

MUST

SHOULD

RFC 9846 TLS January 2026

Rescorla Standards Track Page 72

unexpected_message:

bad_record_mac:

record_overflow:

handshake_failure:

bad_certificate:

unsupported_certificate:

certificate_revoked:

certificate_expired:

certificate_unknown:

illegal_parameter:

unknown_ca:

access_denied:

decode_error:

The following error alerts are defined:

An inappropriate message (e.g., the wrong handshake message,
premature Application Data, etc.) was received. This alert should never be observed in
communication between proper implementations.

This alert is returned if a record is received which cannot be deprotected.
Because AEAD algorithms combine decryption and verification, and also to avoid side-
channel attacks, this alert is used for all deprotection failures. This alert should never be
observed in communication between proper implementations, except when messages were
corrupted in the network.

A TLSCiphertext record was received that had a length more than 214 + 256
bytes, or a record decrypted to a TLSPlaintext record with more than 214 bytes (or some other
negotiated limit). This alert should never be observed in communication between proper
implementations, except when messages were corrupted in the network.

Receipt of a "handshake_failure" alert message indicates that the sender
was unable to negotiate an acceptable set of security parameters given the options available.

A certificate was corrupt, contained signatures that did not verify correctly, etc.

A certificate was of an unsupported type.

A certificate was revoked by its signer.

A certificate has expired or is not currently valid.

Some other (unspecified) issue arose in processing the certificate,
rendering it unacceptable.

A field in the handshake was incorrect or inconsistent with other fields. This
alert is used for errors which conform to the formal protocol syntax but are otherwise
incorrect.

A valid certificate chain or partial chain was received, but the certificate was not
accepted because the CA certificate could not be located or could not be matched with a
known trust anchor.

A valid certificate or PSK was received, but when access control was applied,
the sender decided not to proceed with negotiation.

A message could not be decoded because some field was out of the specified
range or the length of the message was incorrect. This alert is used for errors where the
message does not conform to the formal protocol syntax. This alert should never be observed
in communication between proper implementations, except when messages were corrupted
in the network.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 73

decrypt_error:

protocol_version:

insufficient_security:

internal_error:

inappropriate_fallback:

missing_extension:

unsupported_extension:

unrecognized_name:

bad_certificate_status_response:

unknown_psk_identity:

certificate_required:

general_error:

no_application_protocol:

A handshake (not record layer) cryptographic operation failed, including being
unable to correctly verify a signature or validate a Finished message or a PSK binder.

The protocol version the peer has attempted to negotiate is recognized but
not supported (see Appendix E).

Returned instead of "handshake_failure" when a negotiation has failed
specifically because the server requires parameters more secure than those supported by the
client.

An internal error unrelated to the peer or the correctness of the protocol (such
as a memory allocation failure) makes it impossible to continue.

Sent by a server in response to an invalid connection retry attempt
from a client (see).

Sent by endpoints that receive a handshake message not containing an
extension that is mandatory to send for the offered TLS version or other negotiated
parameters.

Sent by endpoints receiving any handshake message containing an
extension in a ServerHello, HelloRetryRequest, EncryptedExtensions, or Certificate not first
offered in the corresponding ClientHello or CertificateRequest.

Sent by servers when no server exists identified by the name provided by
the client via the "server_name" extension (see).

Sent by clients when an invalid or unacceptable OCSP
response is provided by the server via the "status_request" extension (see).

Sent by servers when PSK key establishment is desired but no
acceptable PSK identity is provided by the client. Sending this alert is ; servers
instead choose to send a "decrypt_error" alert to merely indicate an invalid PSK identity.

Sent by servers when a client certificate is desired but none was provided
by the client.

Sent to indicate an error condition in cases when either no more specific error
is available or the senders wishes to conceal the specific error code. Implementations
use more specific errors when available.

Sent by servers when a client
"application_layer_protocol_negotiation" extension advertises only protocols that the server
does not support (see).

New Alert values are assigned by IANA as described in Section 11.

[RFC7507]

[RFC6066]

[RFC6066]

OPTIONAL MAY

SHOULD

[RFC7301]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 74

7. Cryptographic Computations
The TLS handshake establishes one or more input secrets which are combined to create the
actual working keying material, as detailed below. The key derivation process incorporates both
the input secrets and the handshake transcript. Note that because the handshake transcript
includes the random values from the Hello messages, any given handshake will have different
traffic secrets, even if the same input secrets are used, as is the case when the same PSK is used
for multiple connections.

7.1. Key Schedule
The key derivation process makes use of the HKDF-Extract and HKDF-Expand functions as
defined for HKDF , as well as the functions defined below:

Where HkdfLabel is specified as:

The Hash function used by Transcript-Hash and HKDF is the cipher suite hash algorithm.
Hash.length is its output length in bytes. Messages is the concatenation of the indicated
handshake messages, including the handshake message type and length fields, but not including
record layer headers. Note that in some cases a zero-length Context (indicated by "") is passed to
HKDF-Expand-Label. The labels specified in this document are all ASCII strings and do not
include a trailing NUL byte.

Any extensions to TLS which use "HKDF-Expand-Label" use the HkdfLabel definition associated
with the version of TLS with which they are being used. When used with this specification, that
means using HkdfLabel as defined above; when used with DTLS that means using the
version defined in .

Note: With common hash functions, any label longer than 12 characters requires an additional
iteration of the hash function to compute. The labels in this specification have all been chosen to
fit within this limit.

[RFC5869]

 HKDF-Expand-Label(Secret, Label, Context, Length) =
 HKDF-Expand(Secret, HkdfLabel, Length)

 struct {
 uint16 length = Length;
 opaque label<7..255> = "tls13 " + Label;
 opaque context<0..255> = Context;
 } HkdfLabel;

 Derive-Secret(Secret, Label, Messages) =
 HKDF-Expand-Label(Secret, Label,
 Transcript-Hash(Messages), Hash.length)

[RFC9147]
[RFC9147], Section 5.9

RFC 9846 TLS January 2026

Rescorla Standards Track Page 75

https://www.rfc-editor.org/rfc/rfc9147#section-5.9

Keys are derived from two input secrets using the HKDF-Extract and Derive-Secret functions. The
general pattern for adding a new secret is to use HKDF-Extract with the Salt being the current
secret state and the Input Keying Material (IKM) being the new secret to be added. In this
version of TLS 1.3, the two input secrets are:

PSK (a pre-shared key established externally or derived from the resumption_secret value
from a previous connection)
(EC)DHE shared secret (Section 7.4)

This produces the key schedule shown in the diagram below (Figure 5). In this diagram, the
following formatting conventions apply:

HKDF-Extract is drawn as taking the Salt argument from the top and the IKM argument from
the left, with its output to the bottom and the name of the output on the right.
Derive-Secret's Secret argument is indicated by the incoming arrow. For instance, the Early
Secret is the Secret for generating the client_early_traffic_secret.
"0" indicates a string of Hash.length bytes set to zero.

Note: The key derivation labels use the string "master" even though the values are referred to as
"main" secrets. This mismatch is a result of renaming the values while retaining compatibility.

Note: This does not show all the leaf keys such as the separate AEAD and IV keys but rather the
first set of secrets derived from the handshake.

•

•

•

•

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 76

0

PSK HKDF-Extract = Early Secret

Derive-Secret(.,
"ext binder" |
"res binder",
"")

= binder_key

Derive-Secret(., "c e traffic",
ClientHello)

= client_early_traffic_secret

Derive-Secret(., "e exp master",
ClientHello)

= early_exporter_secret

Derive-Secret(., "derived", "")

(EC)DHE HKDF-Extract = Handshake Secret

Derive-Secret(., "c hs traffic",
ClientHello...ServerHello)

= client_handshake_traffic_secret

Derive-Secret(., "s hs traffic",
ClientHello...ServerHello)

= server_handshake_traffic_secret

Derive-Secret(., "derived", "")

0 HKDF-Extract = Main Secret

Derive-Secret(., "c ap traffic",
ClientHello...server Finished)

= client_application_traffic_secret_0

Derive-Secret(., "s ap traffic",
ClientHello...server Finished)

= server_application_traffic_secret_0

Derive-Secret(., "exp master",
ClientHello...server Finished)

= exporter_secret

Derive-Secret(., "res master",
ClientHello...client Finished)

= resumption_secret

RFC 9846 TLS January 2026

Rescorla Standards Track Page 77

The general pattern here is that the secrets shown down the left side of the diagram are just raw
entropy without context, whereas the secrets down the right side include Handshake Context
and therefore can be used to derive working keys without additional context. Note that the
different calls to Derive-Secret may take different Messages arguments, even with the same
secret. In a 0-RTT exchange, Derive-Secret is called with four distinct transcripts; in a 1-RTT-only
exchange, it is called with three distinct transcripts.

If a given secret is not available, then the 0-value consisting of a string of Hash.length bytes set to
zeros is used. Note that this does not mean skipping rounds, so if PSK is not in use, Early Secret
will still be HKDF-Extract(0, 0). For the computation of the binder_key, the label is "ext binder"
for external PSKs (those provisioned outside of TLS) and "res binder" for resumption PSKs (those
provisioned as the resumption secret of a previous handshake). The different labels prevent the
substitution of one type of PSK for the other.

There are multiple potential Early Secret values, depending on which PSK the server ultimately
selects. The client will need to compute one for each potential PSK; if no PSK is selected, it will
then need to compute the Early Secret corresponding to the zero PSK.

Once all the values which are to be derived from a given secret have been computed, that secret
 be erased.

Figure 5: Main TLS 1.3 Key Schedule

SHOULD

7.2. Updating Traffic Secrets
Once the handshake is complete, it is possible for either side to update its sending traffic keys
using the KeyUpdate handshake message defined in Section 4.6.3. The next generation of traffic
keys is computed by generating client_/server_application_traffic_secret_N+1 from client_/
server_application_traffic_secret_N as described in this section and then re-deriving the traffic
keys as described in Section 7.3.

The next-generation application_traffic_secret is computed as:

Once client_/server_application_traffic_secret_N+1 and its associated traffic keys have been
computed, implementations delete client_/server_application_traffic_secret_N and its
associated traffic keys.

 application_traffic_secret_N+1 =
 HKDF-Expand-Label(application_traffic_secret_N,
 "traffic upd", "", Hash.length)

SHOULD

7.3. Traffic Key Calculation
The traffic keying material is generated from the following input values:

A secret value
A purpose value indicating the specific value being generated

•
•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 78

The length of the key being generated

The traffic keying material is generated from an input traffic secret value using:

[sender] denotes the sending side. The value of Secret for each category of data is shown in the
table below.

Alerts are sent with the then-current sending key (or as plaintext if no such key has been
established.) All the traffic keying material is recomputed whenever the underlying Secret
changes (e.g., when changing from the handshake to Application Data keys or upon a key
update).

•

[sender]_write_key = HKDF-Expand-Label(Secret, "key", "", key_length)
[sender]_write_iv = HKDF-Expand-Label(Secret, "iv", "", iv_length)

Data Type Secret

0-RTT Application and EndOfEarlyData client_early_traffic_secret

Initial Handshake [sender]_handshake_traffic_secret

Post-Handshake and Application Data [sender]_application_traffic_secret_N

Table 3: Secrets for Traffic Keys

7.4. (EC)DHE Shared Secret Calculation

7.4.1. Finite Field Diffie-Hellman

For finite field groups, a conventional Diffie-Hellman computation is
performed. The negotiated key (Z) is converted to a byte string by encoding in big-endian form
and left-padded with zeros up to the size of the prime. This byte string is used as the shared
secret in the key schedule as specified above.

Note that this construction differs from previous versions of TLS which remove leading zeros.

[KEYAGREEMENT]

7.4.2. Elliptic Curve Diffie-Hellman

For secp256r1, secp384r1, and secp521r1, ECDH calculations (including key generation and
shared secret calculation) are performed according to Sections 5.6.1.2 and 5.7.1.2 of

 using the Elliptic Curve Cryptography Cofactor Diffie-Hellman Primitive. The
shared secret Z is the x-coordinate of the ECDH shared secret elliptic curve point represented as
an octet string. Note that the octet string Z as output by the Field-Element-to-Byte String
Conversion specified in Appendix C.2 of has constant length for any given
field; leading zeros found in this octet string be truncated. See Section 4.2.8.2 for
requirements on public-key validation.

[KEYAGREEMENT]

[KEYAGREEMENT]
MUST NOT

RFC 9846 TLS January 2026

Rescorla Standards Track Page 79

For X25519 and X448, the ECDH calculations are as follows:

The public key to put into the KeyShareEntry.key_exchange structure is the result of
applying the ECDH scalar multiplication function to the secret key of appropriate length
(into scalar input) and the standard public basepoint (into u-coordinate point input).
The ECDH shared secret is the result of applying the ECDH scalar multiplication function to
the secret key (into scalar input) and the peer's public key (into u-coordinate point input).
The output is used raw, with no processing.

For these curves, implementations use the approach specified in to calculate
the Diffie-Hellman shared secret. Implementations check whether the computed Diffie-
Hellman shared secret is the all-zero value and abort if so, as described in .
If implementors use an alternative implementation of these elliptic curves, they
perform the additional checks specified in .

•

•

SHOULD [RFC7748]
MUST

Section 6 of [RFC7748]
SHOULD

Section 7 of [RFC7748]

7.5. Exporters
 defines keying material exporters for TLS in terms of the TLS pseudorandom function

(PRF). This document replaces the PRF with HKDF, thus requiring a new construction. The
exporter interface remains the same.

The exporter value is computed as:

Where Secret is either the early_exporter_secret or the exporter_secret. Implementations
use the exporter_secret unless explicitly specified by the application. The early_exporter_secret
is defined for use in settings where an exporter is needed for 0-RTT data. A separate interface for
the early exporter is ; this avoids the exporter user accidentally using an early
exporter when a regular one is desired or vice versa.

If no context is provided, the context_value is zero length. Consequently, providing no context
computes the same value as providing an empty context. This is a change from previous
versions of TLS where an empty context produced a different output than an absent context. As
of this document's publication, no allocated exporter label is used both with and without a
context. Future specifications define a use of exporters that permit both an empty
context and no context with the same label. New uses of exporters provide a context in
all exporter computations, though the value could be empty.

Requirements for the format of exporter labels are defined in .

[RFC5705]

TLS-Exporter(label, context_value, key_length) =
 HKDF-Expand-Label(Derive-Secret(Secret, label, ""),
 "exporter", Hash(context_value), key_length)

MUST

RECOMMENDED

MUST NOT
SHOULD

Section 4 of [RFC5705]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 80

https://www.rfc-editor.org/rfc/rfc7748#section-6
https://www.rfc-editor.org/rfc/rfc7748#section-7
https://www.rfc-editor.org/rfc/rfc5705#section-4

8. 0-RTT and Anti-Replay
As noted in Section 2.3 and Appendix F.5, TLS does not provide inherent replay protections for 0-
RTT data. There are two potential threats to be concerned with:

Network attackers who mount a replay attack by simply duplicating a flight of 0-RTT data.
Network attackers who take advantage of client retry behavior to arrange for the server to
receive multiple copies of an application message. This threat already exists to some extent
because clients that value robustness respond to network errors by attempting to retry
requests. However, 0-RTT adds an additional dimension for any server system which does
not maintain globally consistent server state. Specifically, if a server system has multiple
zones where tickets from zone A will not be accepted in zone B, then an attacker can
duplicate a ClientHello and early data intended for A to both A and B. At A, the data will be
accepted in 0-RTT, but at B the server will reject 0-RTT data and instead force a full
handshake. If the attacker blocks the ServerHello from A, then the client will complete the
handshake with B and probably retry the request, leading to duplication on the server
system as a whole.

The first class of attack can be prevented by sharing state to guarantee that the 0-RTT data is
accepted at most once. Servers provide that level of replay safety by implementing one
of the methods described in this section or by equivalent means. It is understood, however, that
due to operational concerns not all deployments will maintain state at that level. Therefore, in
normal operation, clients will not know which, if any, of these mechanisms servers actually
implement and hence only send early data which they deem safe to be replayed.

In addition to the direct effects of replays, there is a class of attacks where even operations
normally considered idempotent could be exploited by a large number of replays (timing
attacks, resource limit exhaustion and others, as described in Appendix F.5). Those can be
mitigated by ensuring that every 0-RTT payload can be replayed only a limited number of times.
The server ensure that any instance of it (be it a machine, a thread, or any other entity
within the relevant serving infrastructure) would accept 0-RTT for the same 0-RTT handshake at
most once; this limits the number of replays to the number of server instances in the
deployment. Such a guarantee can be accomplished by locally recording data from recently
received ClientHellos and rejecting repeats, or by any other method that provides the same or a
stronger guarantee. The "at most once per server instance" guarantee is a minimum
requirement; servers limit 0-RTT replays further when feasible.

The second class of attack cannot be prevented at the TLS layer and be dealt with by any
application. Note that any application whose clients implement any kind of retry behavior
already needs to implement some sort of anti-replay defense.

•
•

SHOULD

MUST

MUST

SHOULD

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 81

8.1. Single-Use Tickets
The simplest form of anti-replay defense is for the server to only allow each session ticket to be
used once. For instance, the server can maintain a database of all outstanding valid tickets,
deleting each ticket from the database as it is used. If an unknown ticket is provided, the server
would then fall back to a full handshake.

If the tickets are not self-contained but rather are database keys, and the corresponding PSKs are
deleted upon use, then connections established using PSKs enjoy not only anti-replay protection,
but also forward secrecy once all copies of the PSK from the database entry have been deleted.
This mechanism also improves security for PSK usage when PSK is used without (EC)DHE.

Because this mechanism requires sharing the session database between server nodes in
environments with multiple distributed servers, it may be hard to achieve high rates of
successful PSK 0-RTT connections when compared to self-encrypted tickets. Unlike session
databases, session tickets can successfully do PSK-based session establishment even without
consistent storage, though when 0-RTT is allowed they still require consistent storage for anti-
replay of 0-RTT data, as detailed in the following section.

8.2. Client Hello Recording
An alternative form of anti-replay is to record a unique value derived from the ClientHello
(generally either the random value or the PSK binder) and reject duplicates. Recording all
ClientHellos causes state to grow without bound, but a server can instead record ClientHellos
within a given time window and use the "obfuscated_ticket_age" to ensure that tickets aren't
reused outside that window.

To implement this, when a ClientHello is received, the server first verifies the PSK binder as
described in Section 4.2.11. It then computes the expected_arrival_time as described in the next
section and rejects 0-RTT if it is outside the recording window, falling back to the 1-RTT
handshake.

If the expected_arrival_time is in the window, then the server checks to see if it has recorded a
matching ClientHello. If one is found, it either aborts the handshake with an "illegal_parameter"
alert or accepts the PSK but rejects 0-RTT. If no matching ClientHello is found, then it accepts 0-
RTT and then stores the ClientHello for as long as the expected_arrival_time is inside the
window. Servers also implement data stores with false positives, such as Bloom filters, in
which case they respond to apparent replay by rejecting 0-RTT but abort the
handshake.

The server derive the storage key only from validated sections of the ClientHello. If the
ClientHello contains multiple PSK identities, then an attacker can create multiple ClientHellos
with different binder values for the less-preferred identity on the assumption that the server
will not verify it (as recommended by Section 4.2.11). I.e., if the client sends PSKs A and B but the
server prefers A, then the attacker can change the binder for B without affecting the binder for
A. If the binder for B is part of the storage key, then this ClientHello will not appear as a

MAY
MUST MUST NOT

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 82

duplicate, which will cause the ClientHello to be accepted, and may cause side effects such as
replay cache pollution, although any 0-RTT data will not be decryptable because it will use
different keys. If the validated binder or the ClientHello.random is used as the storage key, then
this attack is not possible.

Because this mechanism does not require storing all outstanding tickets, it may be easier to
implement in distributed systems with high rates of resumption and 0-RTT, at the cost of
potentially weaker anti-replay defense because of the difficulty of reliably storing and retrieving
the received ClientHello messages. In many such systems, it is impractical to have globally
consistent storage of all the received ClientHellos. In this case, the best anti-replay protection is
provided by having a single storage zone be authoritative for a given ticket and refusing 0-RTT
for that ticket in any other zone. This approach prevents simple replay by the attacker because
only one zone will accept 0-RTT data. A weaker design is to implement separate storage for each
zone but allow 0-RTT in any zone. This approach limits the number of replays to once per zone.
Application message duplication of course remains possible with either design.

When implementations are freshly started, they reject 0-RTT as long as any portion of
their recording window overlaps the startup time. Otherwise, they run the risk of accepting
replays which were originally sent during that period.

Note: If the client's clock is running much faster than the server's, then a ClientHello may be
received that is outside the window in the future, in which case it might be accepted for 1-RTT,
causing a client retry, and then acceptable later for 0-RTT. This is another variant of the second
form of attack described in Section 8.

SHOULD

8.3. Freshness Checks
Because the ClientHello indicates the time at which the client sent it, it is possible to efficiently
determine whether a ClientHello was likely sent reasonably recently and only accept 0-RTT for
such a ClientHello, otherwise falling back to a 1-RTT handshake. This is necessary for the
ClientHello storage mechanism described in Section 8.2 because otherwise the server needs to
store an unlimited number of ClientHellos, and is a useful optimization for self-contained single-
use tickets because it allows efficient rejection of ClientHellos which cannot be used for 0-RTT.

To implement this mechanism, a server needs to store the time that the server generated the
session ticket, offset by an estimate of the round-trip time between client and server. I.e.,

This value can be encoded in the ticket, thus avoiding the need to keep state for each
outstanding ticket. The server can determine the client's view of the age of the ticket by
subtracting the ticket's "ticket_age_add" value from the "obfuscated_ticket_age" parameter in the
client's "pre_shared_key" extension. The server can determine the expected_arrival_time of the
ClientHello as:

 adjusted_creation_time = creation_time + estimated_RTT

RFC 9846 TLS January 2026

Rescorla Standards Track Page 83

When a new ClientHello is received, the expected_arrival_time is then compared against the
current server wall clock time and if they differ by more than a certain amount, 0-RTT is
rejected, though the 1-RTT handshake can be allowed to complete.

There are several potential sources of error that might cause mismatches between the
expected_arrival_time and the measured time. Variations in client and server clock rates are
likely to be minimal, though potentially the absolute times may be off by large values. Network
propagation delays are the most likely causes of a mismatch in legitimate values for elapsed
time. Both the NewSessionTicket and ClientHello messages might be retransmitted and therefore
delayed, which might be hidden by TCP. For clients on the Internet, this implies windows on the
order of ten seconds to account for errors in clocks and variations in measurements; other
deployment scenarios may have different needs. Clock skew distributions are not symmetric, so
the optimal tradeoff may involve an asymmetric range of permissible mismatch values.

Note that freshness checking alone is not sufficient to prevent replays because it does not detect
them during the error window, which -- depending on bandwidth and system capacity -- could
include billions of replays in real-world settings. In addition, this freshness checking is only
done at the time the ClientHello is received, and not when subsequent early Application Data
records are received. After early data is accepted, records may continue to be streamed to the
server over a longer time period.

 expected_arrival_time = adjusted_creation_time + clients_ticket_age

9. Compliance Requirements

9.1. Mandatory-to-Implement Cipher Suites
In the absence of an application profile standard specifying otherwise:

A TLS-compliant application implement the TLS_AES_128_GCM_SHA256 cipher
suite and implement the TLS_AES_256_GCM_SHA384 and
TLS_CHACHA20_POLY1305_SHA256 cipher suites (see Appendix B.4).

A TLS-compliant application support digital signatures with rsa_pkcs1_sha256 (for
certificates), rsa_pss_rsae_sha256 (for CertificateVerify and certificates), and
ecdsa_secp256r1_sha256. A TLS-compliant application support key exchange with
secp256r1 (NIST P-256) and support key exchange with X25519 .

MUST [GCM]
SHOULD [GCM]

[RFC8439]

MUST

MUST
SHOULD [RFC7748]

9.2. Mandatory-to-Implement Extensions
In the absence of an application profile standard specifying otherwise, a TLS-compliant
application implement the following TLS extensions:

Supported Versions ("supported_versions"; Section 4.2.1)
Cookie ("cookie"; Section 4.2.2)
Signature Algorithms ("signature_algorithms"; Section 4.2.3)

MUST

•
•
•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 84

Signature Algorithms Certificate ("signature_algorithms_cert"; Section 4.2.3)
Negotiated Groups ("supported_groups"; Section 4.2.7)
Key Share ("key_share"; Section 4.2.8)
Server Name Indication ("server_name";)

All implementations send and use these extensions when offering applicable features:

"supported_versions" is for all ClientHello, ServerHello, and HelloRetryRequest
messages.
"signature_algorithms" is for certificate authentication.
"supported_groups" is for ClientHello messages using DHE or ECDHE key
exchange.
"key_share" is for DHE or ECDHE key exchange.
"pre_shared_key" is for PSK key agreement.
"psk_key_exchange_modes" is for PSK key agreement.

A client is considered to be attempting to negotiate using this specification if the ClientHello
contains a "supported_versions" extension with 0x0304 contained in its body. Such a ClientHello
message meet the following requirements:

If not containing a "pre_shared_key" extension, it contain both a
"signature_algorithms" extension and a "supported_groups" extension.
If containing a "supported_groups" extension, it also contain a "key_share" extension,
and vice versa. An empty KeyShare.client_shares list is permitted.

Servers receiving a ClientHello which does not conform to these requirements abort the
handshake with a "missing_extension" alert.

Additionally, all implementations support the use of the "server_name" extension with
applications capable of using it. Servers require clients to send a valid "server_name"
extension. Servers requiring this extension respond to a ClientHello lacking a
"server_name" extension by terminating the connection with a "missing_extension" alert.

•
•
•
• Section 3 of [RFC6066]

MUST

• REQUIRED

• REQUIRED

• REQUIRED

• REQUIRED

• REQUIRED

• REQUIRED

MUST

• MUST

• MUST

MUST

MUST
MAY

SHOULD

9.3. Protocol Invariants
This section describes invariants that TLS endpoints and middleboxes follow. It also
applies to earlier versions of TLS.

TLS is designed to be securely and compatibly extensible. Newer clients or servers, when
communicating with newer peers, should negotiate the most preferred common parameters.
The TLS handshake provides downgrade protection: Middleboxes passing traffic between a
newer client and newer server without terminating TLS should be unable to influence the
handshake (see Appendix F.1). At the same time, deployments update at different rates, so a
newer client or server continue to support older parameters, which would allow it to
interoperate with older endpoints.

MUST

MAY

RFC 9846 TLS January 2026

Rescorla Standards Track Page 85

https://www.rfc-editor.org/rfc/rfc6066#section-3

For this to work, implementations correctly handle extensible fields:

A client sending a ClientHello support all parameters advertised in it. Otherwise, the
server may fail to interoperate by selecting one of those parameters.
A server receiving a ClientHello correctly ignore all unrecognized cipher suites,
extensions, and other parameters. Otherwise, it may fail to interoperate with newer clients.
In TLS 1.3, a client receiving a CertificateRequest or NewSessionTicket also ignore all
unrecognized extensions.
A middlebox which terminates a TLS connection behave as a compliant TLS server (to
the original client), including having a certificate which the client is willing to accept, and
also as a compliant TLS client (to the original server), including verifying the original
server's certificate. In particular, it generate its own ClientHello containing only
parameters it understands, and it generate a fresh ServerHello random value, rather
than forwarding the endpoint's value.

Note that TLS's protocol requirements and security analysis only apply to the two
connections separately. Safely deploying a TLS terminator requires additional security
considerations which are beyond the scope of this document.

A middlebox which forwards ClientHello parameters it does not understand
process any messages beyond that ClientHello. It forward all subsequent traffic
unmodified. Otherwise, it may fail to interoperate with newer clients and servers.

Forwarded ClientHellos may contain advertisements for features not supported by the
middlebox, so the response may include future TLS additions the middlebox does not
recognize. These additions change any message beyond the ClientHello arbitrarily. In
particular, the values sent in the ServerHello might change, the ServerHello format might
change, and the TLSCiphertext format might change.

The design of TLS 1.3 was constrained by widely deployed non-compliant TLS middleboxes (see
Appendix E.4); however, it does not relax the invariants. Those middleboxes continue to be non-
compliant.

MUST

• MUST

• MUST

MUST

• MUST

MUST
MUST

• MUST NOT
MUST

MAY

10. Security Considerations
Security issues are discussed throughout this memo, especially in Appendix C, Appendix E, and
Appendix F.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 86

11. IANA Considerations
This document uses several registries that were originally created in and updated in

 and . The changes between , , and this document are
described in Section 11.1. IANA has replaced references to these RFCs with references to this
document. The registries and their allocation policies are below:

TLS Cipher Suites registry: Values with the first byte in the range 0-254 (decimal) are
assigned via Specification Required . Values with the first byte 255 (decimal) are
reserved for Private Use .

IANA has added the cipher suites listed in Appendix B.4 to the registry. The "Value" and
"Description" columns are taken from the table. The "DTLS-OK" and "Recommended"
columns are both marked as "Y" for each new cipher suite.

TLS ContentType registry: Future values are allocated via Standards Action .
TLS Alerts registry: Future values are allocated via Standards Action . IANA has
populated this registry with the values from Appendix B.2. The "DTLS-OK" column is marked
as "Y" for all such values. Values marked as "_RESERVED" have comments describing their
previous usage.
TLS HandshakeType registry: Future values are allocated via Standards Action .
IANA has updated this registry to rename item 4 from "NewSessionTicket" to
"new_session_ticket" and populated this registry with the values from Appendix B.3. The
"DTLS-OK" column is marked as "Y" for all such values. Values marked "_RESERVED" have
comments describing their previous or temporary usage.

This document also uses the TLS ExtensionType Values registry originally created in .
IANA has updated it to reference this document. Changes to the registry follow:

IANA has updated the registration policy as follows:

Values with the first byte in the range 0-254 (decimal) are assigned via Specification Required
. Values with the first byte 255 (decimal) are reserved for Private Use .

IANA has updated this registry to include the "key_share", "pre_shared_key",
"psk_key_exchange_modes", "early_data", "cookie", "supported_versions",
"certificate_authorities", "oid_filters", "post_handshake_auth", and
"signature_algorithms_cert" extensions with the values defined in this document and the
"Recommended" value of "Y".
IANA has updated this registry to include a "TLS 1.3" column which lists the messages in
which the extension may appear. This column has been initially populated from the table in
Section 4.2, with any extension not listed there marked as "-" to indicate that it is not used by
TLS 1.3.

[RFC4346]
[RFC8446] [RFC8447] [RFC8446] [RFC8447]

•
[RFC8126]

[RFC8126]

• [RFC8126]
• [RFC8126]

• [RFC8126]

[RFC4366]

•

[RFC8126] [RFC8126]

•

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 87

This document updates two entries in the TLS Certificate Types registry originally created in
 and updated in . IANA has updated the entry for value 1 to have the name

"OpenPGP_RESERVED", "Recommended" value "N", and comment "Used in TLS versions prior to
1.3." IANA has updated the entry for value 0 to have the name "X509", "Recommended" value "Y",
and comment "Was X.509 before TLS 1.3".

This document updates an entry in the TLS Certificate Status Types registry originally created in
. IANA has updated the entry for value 2 to have the name "ocsp_multi_RESERVED"

and comment "Used in TLS versions prior to 1.3".

This document updates two entries in the TLS Supported Groups registry (created under a
different name by ; now maintained by and updated by and

). The entries for values 29 and 30 (x25519 and x448) have been updated to also refer
to this document.

In addition, this document defines two new registries that are maintained by IANA:

TLS SignatureScheme registry: Values with the first byte in the range 0-253 (decimal) are
assigned via Specification Required . Values with the first byte 254 or 255
(decimal) are reserved for Private Use . Values with the first byte in the range 0-6
or with the second byte in the range 0-3 that are not currently allocated are reserved for
backward compatibility. This registry has a "Recommended" column. The registry has been
initially populated with the values described in Section 4.2.3. The following values are
marked as "Recommended": ecdsa_secp256r1_sha256, ecdsa_secp384r1_sha384,
rsa_pss_rsae_sha256, rsa_pss_rsae_sha384, rsa_pss_rsae_sha512, rsa_pss_pss_sha256,
rsa_pss_pss_sha384, rsa_pss_pss_sha512, and ed25519. The "Recommended" column is
assigned a value of "N" unless explicitly requested, and adding a value with a
"Recommended" value of "Y" requires Standards Action . IESG Approval is

 for a Y->N transition.
TLS PskKeyExchangeMode registry: Values in the range 0-253 (decimal) are assigned via
Specification Required . The values 254 and 255 (decimal) are reserved for Private
Use . This registry has a "Recommended" column. The registry has been initially
populated with psk_ke (0) and psk_dhe_ke (1). Both are marked as "Recommended". The
"Recommended" column is assigned a value of "N" unless explicitly requested, and adding a
value with a "Recommended" value of "Y" requires Standards Action . IESG
Approval is for a Y->N transition.

[RFC6091] [RFC8447]

[RFC6961]

[RFC4492] [RFC8422] [RFC7919]
[RFC8447]

•
[RFC8126]

[RFC8126]

[RFC8126]
REQUIRED

•
[RFC8126]

[RFC8126]

[RFC8126]
REQUIRED

11.1. Changes for this RFC
IANA has updated all references to in the IANA registries with references to this
document.

IANA has renamed the "extended_master_secret" value in the TLS ExtensionType Values registry
to "extended_main_secret".

IANA has created a value for the "general_error" alert in the TLS Alerts registry with the value
given in Section 6.

[RFC8446]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 88

12. References

[GCM]

[KEYAGREEMENT]

[RFC2104]

[RFC2119]

[RFC5116]

[RFC5280]

[RFC5705]

[RFC5756]

[RFC5869]

[RFC6066]

12.1. Normative References

,
, , ,

November 2007, .

, , , , and ,

, ,
, April 2018, .

, , and ,
, , , February 1997,

.

, , ,
, , March 1997,
.

, ,
, , January 2008,

.

, , , , , and ,

, , , May 2008,
.

, ,
, , March 2010,

.

, , , , and ,
, , ,

January 2010, .

 and ,
, , , May 2010,

.

,
, , , January 2011,

.

Dworkin, M. "Recommendation for Block Cipher Modes of Operation: Galois/
Counter Mode (GCM) and GMAC" NIST SP 800-38D DOI 10.6028/NIST.SP.800-38D

<https://doi.org/10.6028/NIST.SP.800-38D>

Barker, E. Chen, L. Roginsky, A. Vassilev, A. R. Davis
"Recommendation for pair-wise key-establishment schemes using discrete
logarithm cryptography" National Institute of Standards and Technology DOI
10.6028/nist.sp.800-56ar3 <https://doi.org/10.6028/nist.sp.800-56ar3>

Krawczyk, H. Bellare, M. R. Canetti "HMAC: Keyed-Hashing for Message
Authentication" RFC 2104 DOI 10.17487/RFC2104 <https://
www.rfc-editor.org/info/rfc2104>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

McGrew, D. "An Interface and Algorithms for Authenticated Encryption" RFC
5116 DOI 10.17487/RFC5116 <https://www.rfc-editor.org/info/
rfc5116>

Cooper, D. Santesson, S. Farrell, S. Boeyen, S. Housley, R. W. Polk
"Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation
List (CRL) Profile" RFC 5280 DOI 10.17487/RFC5280 <https://www.rfc-
editor.org/info/rfc5280>

Rescorla, E. "Keying Material Exporters for Transport Layer Security (TLS)" RFC
5705 DOI 10.17487/RFC5705 <https://www.rfc-editor.org/info/
rfc5705>

Turner, S. Brown, D. Yiu, K. Housley, R. T. Polk "Updates for RSAES-OAEP
and RSASSA-PSS Algorithm Parameters" RFC 5756 DOI 10.17487/RFC5756

<https://www.rfc-editor.org/info/rfc5756>

Krawczyk, H. P. Eronen "HMAC-based Extract-and-Expand Key Derivation
Function (HKDF)" RFC 5869 DOI 10.17487/RFC5869 <https://www.rfc-
editor.org/info/rfc5869>

Eastlake 3rd, D. "Transport Layer Security (TLS) Extensions: Extension
Definitions" RFC 6066 DOI 10.17487/RFC6066 <https://www.rfc-
editor.org/info/rfc6066>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 89

https://doi.org/10.6028/NIST.SP.800-38D
https://doi.org/10.6028/nist.sp.800-56ar3
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2104
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5116
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5280
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc5705
https://www.rfc-editor.org/info/rfc5756
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc5869
https://www.rfc-editor.org/info/rfc6066
https://www.rfc-editor.org/info/rfc6066

[RFC6655]

[RFC6960]

[RFC6961]

[RFC6962]

[RFC6979]

[RFC7301]

[RFC7507]

[RFC7627]

[RFC7748]

[RFC7919]

[RFC8017]

[RFC8032]

 and ,
, , , July 2012,

.

, , , , , and ,
,

, , June 2013,
.

,
, , , June 2013,

.

, , and , , ,
, June 2013, .

,
, ,

, August 2013, .

, , , and ,
, ,

, July 2014, .

 and ,
, , , April

2015, .

, , , , and ,

, , , September 2015,
.

, , and , , ,
, January 2016, .

,
, , , August 2016,

.

, , , and ,
, , ,

November 2016, .

 and ,
, , , January 2017,

.

McGrew, D. D. Bailey "AES-CCM Cipher Suites for Transport Layer Security
(TLS)" RFC 6655 DOI 10.17487/RFC6655 <https://www.rfc-editor.org/
info/rfc6655>

Santesson, S. Myers, M. Ankney, R. Malpani, A. Galperin, S. C. Adams "X.
509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP"
RFC 6960 DOI 10.17487/RFC6960 <https://www.rfc-editor.org/info/
rfc6960>

Pettersen, Y. "The Transport Layer Security (TLS) Multiple Certificate Status
Request Extension" RFC 6961 DOI 10.17487/RFC6961 <https://
www.rfc-editor.org/info/rfc6961>

Laurie, B. Langley, A. E. Kasper "Certificate Transparency" RFC 6962 DOI
10.17487/RFC6962 <https://www.rfc-editor.org/info/rfc6962>

Pornin, T. "Deterministic Usage of the Digital Signature Algorithm (DSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA)" RFC 6979 DOI 10.17487/
RFC6979 <https://www.rfc-editor.org/info/rfc6979>

Friedl, S. Popov, A. Langley, A. E. Stephan "Transport Layer Security (TLS)
Application-Layer Protocol Negotiation Extension" RFC 7301 DOI 10.17487/
RFC7301 <https://www.rfc-editor.org/info/rfc7301>

Moeller, B. A. Langley "TLS Fallback Signaling Cipher Suite Value (SCSV) for
Preventing Protocol Downgrade Attacks" RFC 7507 DOI 10.17487/RFC7507

<https://www.rfc-editor.org/info/rfc7507>

Bhargavan, K., Ed. Delignat-Lavaud, A. Pironti, A. Langley, A. M. Ray
"Transport Layer Security (TLS) Session Hash and Extended Master Secret
Extension" RFC 7627 DOI 10.17487/RFC7627 <https://www.rfc-
editor.org/info/rfc7627>

Langley, A. Hamburg, M. S. Turner "Elliptic Curves for Security" RFC 7748
DOI 10.17487/RFC7748 <https://www.rfc-editor.org/info/rfc7748>

Gillmor, D. "Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for
Transport Layer Security (TLS)" RFC 7919 DOI 10.17487/RFC7919
<https://www.rfc-editor.org/info/rfc7919>

Moriarty, K., Ed. Kaliski, B. Jonsson, J. A. Rusch "PKCS #1: RSA
Cryptography Specifications Version 2.2" RFC 8017 DOI 10.17487/RFC8017

<https://www.rfc-editor.org/info/rfc8017>

Josefsson, S. I. Liusvaara "Edwards-Curve Digital Signature Algorithm
(EdDSA)" RFC 8032 DOI 10.17487/RFC8032 <https://www.rfc-
editor.org/info/rfc8032>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 90

https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc6655
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6960
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc6961
https://www.rfc-editor.org/info/rfc6962
https://www.rfc-editor.org/info/rfc6979
https://www.rfc-editor.org/info/rfc7301
https://www.rfc-editor.org/info/rfc7507
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7627
https://www.rfc-editor.org/info/rfc7748
https://www.rfc-editor.org/info/rfc7919
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8032
https://www.rfc-editor.org/info/rfc8032

[RFC8126]

[RFC8174]

[RFC8439]

[RFC8996]

[SHS]

[X690]

, , and ,
, , , , June

2017, .

, ,
, , , May 2017,

.

 and , , ,
, June 2018, .

 and , , , ,
, March 2021, .

, ,
, 2015, .

,

, , February 2021,
.

Cotton, M. Leiba, B. T. Narten "Guidelines for Writing an IANA
Considerations Section in RFCs" BCP 26 RFC 8126 DOI 10.17487/RFC8126

<https://www.rfc-editor.org/info/rfc8126>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Nir, Y. A. Langley "ChaCha20 and Poly1305 for IETF Protocols" RFC 8439
DOI 10.17487/RFC8439 <https://www.rfc-editor.org/info/rfc8439>

Moriarty, K. S. Farrell "Deprecating TLS 1.0 and TLS 1.1" BCP 195 RFC 8996
DOI 10.17487/RFC8996 <https://www.rfc-editor.org/info/rfc8996>

"Secure hash standard" National Institute of Standards and Technology (U.S.)
DOI 10.6028/nist.fips.180-4 <https://doi.org/10.6028/nist.fips.180-4>

ITU-T "Information technology - ASN.1 encoding Rules: Specification of Basic
Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished
Encoding Rules (DER)" ITU-T Recommendation X.690 <https://
www.itu.int/rec/T-REC-X.690-202102-I/en>

[AEAD-LIMITS]

[BBFGKZ16]

[BBK17]

[BDFKPPRSZZ16]

[Ben17a]

[Ben17b]

12.2. Informative References

 and , ,
August 2017, .

, , , , , and
, , ,

, , May 2016,
.

, , and ,
, ,

, ,
May 2017, .

, , , , ,
, , , , and ,

,
, December 2016,

.

, ,
, November 2017,

.

, ,
, 18 December 2017,

.

Luykx, A. K. Paterson "Limits on Authenticated Encryption Use in TLS"
<https://eprint.iacr.org/2024/051>

Bhargavan, K. Brzuska, C. Fournet, C. Green, M. Kohlweiss, M. S. Zanella-
Beguelin "Downgrade Resilience in Key-Exchange Protocols" IEEE 2016 IEEE
Symposium on Security and Privacy (SP) DOI 10.1109/sp.2016.37
<https://doi.org/10.1109/sp.2016.37>

Bhargavan, K. Blanchet, B. N. Kobeissi "Verified Models and Reference
Implementations for the TLS 1.3 Standard Candidate" IEEE 2017 IEEE
Symposium on Security and Privacy (SP) pp. 483-502 DOI 10.1109/sp.2017.26

<https://doi.org/10.1109/sp.2017.26>

Bhargavan, K. Delignat-Lavaud, A. Fournet, C. Kohlweiss, M. Pan, J.
Protzenko, J. Rastogi, A. Swamy, N. Zanella-Beguelin, S. J. Zinzindohoue
"Implementing and Proving the TLS 1.3 Record Layer" Proceedings of IEEE
Symposium on Security and Privacy (San Jose) 2017 <https://
eprint.iacr.org/2016/1178>

Benjamin, D. "Presentation before the TLS WG at IETF 100" IETF 100
Proceedings <https://datatracker.ietf.org/meeting/100/
materials/slides-100-tls-sessa-tls13/>

Benjamin, D. "Additional TLS 1.3 results from Chrome" message to the TLS
mailing list <https://mailarchive.ietf.org/arch/msg/tls/
i9blmvG2BEPf1s1OJkenHknRw9c/>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 91

https://www.rfc-editor.org/info/rfc8126
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8439
https://www.rfc-editor.org/info/rfc8996
https://doi.org/10.6028/nist.fips.180-4
https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://www.itu.int/rec/T-REC-X.690-202102-I/en
https://eprint.iacr.org/2024/051
https://doi.org/10.1109/sp.2016.37
https://doi.org/10.1109/sp.2017.26
https://eprint.iacr.org/2016/1178
https://eprint.iacr.org/2016/1178
https://datatracker.ietf.org/meeting/100/materials/slides-100-tls-sessa-tls13/
https://datatracker.ietf.org/meeting/100/materials/slides-100-tls-sessa-tls13/
https://mailarchive.ietf.org/arch/msg/tls/i9blmvG2BEPf1s1OJkenHknRw9c/
https://mailarchive.ietf.org/arch/msg/tls/i9blmvG2BEPf1s1OJkenHknRw9c/

[Blei98]

[BMMRT15]

[BT16]

[CCG16]

[CHECKOWAY]

[CHHSV17]

[CHSV16]

[CK01]

[CLINIC]

[DFGS15]

,
, , 1998,

.

, , , , and ,
, ,

September 2015, .

 and ,
, , July 2016,
.

, , and , ,
,

, , June 2016, .

, , , , , ,
, , , and ,

, ,
,

, October 2016,
.

, , , , and ,

, , 10
February 2017,

.

, , , and ,
,

, ,
, May 2016, .

 and ,
, ,
, ,

, 2001,
.

, , , and ,
,

, ,
, , 2014,

.

, , , and ,
,

, October 2015, .

Bleichenbacher, D. "Chosen Ciphertext Attacks against Protocols Based on RSA
Encryption Standard PKCS #1" Proceedings of CRYPTO '98 <https://
link.springer.com/chapter/10.1007/bfb0055716>

Badertscher, C. Matt, C. Maurer, U. Rogaway, P. B. Tackmann "Augmented
Secure Channels and the Goal of the TLS 1.3 Record Layer" ProvSec 2015

<https://eprint.iacr.org/2015/394>

Bellare, M. B. Tackmann "The Multi-User Security of Authenticated
Encryption: AES-GCM in TLS 1.3" Proceedings of CRYPTO 2016
<https://eprint.iacr.org/2016/564>

Cohn-Gordon, K. Cremers, C. L. Garratt "On Post-compromise Security"
IEEE 2016 IEEE 29th Computer Security Foundations Symposium (CSF) pp.
164-178 DOI 10.1109/csf.2016.19 <https://doi.org/10.1109/csf.2016.19>

Checkoway, S. Maskiewicz, J. Garman, C. Fried, J. Cohney, S. Green, M.
Heninger, N. Weinmann, R. Rescorla, E. H. Shacham "A Systematic
Analysis of the Juniper Dual EC Incident" ACM Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security pp. 468-479 DOI
10.1145/2976749.2978395 <https://doi.org/
10.1145/2976749.2978395>

Cremers, C. Horvat, M. Hoyland, J. van der Merwe, T. S. Scott "Awkward
Handshake: Possible mismatch of client/server view on client authentication in
post-handshake mode in Revision 18" message to the TLS mailing list

<https://mailarchive.ietf.org/arch/msg/tls/
crdSCgiW-94z2joulYJtuA52E9E/>

Cremers, C. Horvat, M. Scott, S. T. van der Merwe "Automated Analysis
and Verification of TLS 1.3: 0-RTT, Resumption and Delayed Authentication"
IEEE 2016 IEEE Symposium on Security and Privacy (SP) pp. 470-485 DOI
10.1109/sp.2016.35 <https://doi.org/10.1109/sp.2016.35>

Canetti, R. H. Krawczyk "Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels" Springer Berlin Heidelberg Lecture Notes in
Computer Science pp. 453-474 DOI 10.1007/3-540-44987-6_28 ISBN
["9783540420705", "9783540449874"] <https://doi.org/
10.1007/3-540-44987-6_28>

Miller, B. Huang, L. Joseph, A. J. Tygar "I Know Why You Went to the
Clinic: Risks and Realization of HTTPS Traffic Analysis" Springer International
Publishing Lecture Notes in Computer Science pp. 143-163 DOI
10.1007/978-3-319-08506-7_8 ISBN ["9783319085050", "9783319085067"]
<https://doi.org/10.1007/978-3-319-08506-7_8>

Dowling, B. Fischlin, M. Guenther, F. D. Stebila "A Cryptographic Analysis
of the TLS 1.3 draft-10 Full and Pre-shared Key Handshake Protocol"
Proceedings of ACM CCS 2015 <https://eprint.iacr.org/2015/914>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 92

https://link.springer.com/chapter/10.1007/bfb0055716
https://link.springer.com/chapter/10.1007/bfb0055716
https://eprint.iacr.org/2015/394
https://eprint.iacr.org/2016/564
https://doi.org/10.1109/csf.2016.19
https://doi.org/10.1145/2976749.2978395
https://doi.org/10.1145/2976749.2978395
https://mailarchive.ietf.org/arch/msg/tls/crdSCgiW-94z2joulYJtuA52E9E/
https://mailarchive.ietf.org/arch/msg/tls/crdSCgiW-94z2joulYJtuA52E9E/
https://doi.org/10.1109/sp.2016.35
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/3-540-44987-6_28
https://doi.org/10.1007/978-3-319-08506-7_8
https://eprint.iacr.org/2015/914

[DFGS16]

[DH76]

[DOW92]

[DSA-1571-1]

[DSS]

[ECDP]

[FETCH]

[FG17]

[FGSW16]

[FW15]

[HCJC16]

, , , and ,
,

, February 2016, .

 and , ,
,

, , November 1976,
.

, , and ,
, ,

, , June 1992,
.

,
,

, May 2008, .

,
, , February 2023,

.

, , , , and ,

, ,
, February 2023, .

, , , .

 and ,
, , April

2017, .

, , , and ,
,

,
, 2016, .

, ,
, 2 September 2015,

.

, , , and ,
,

, ,
, February 2016,

.

Dowling, B. Fischlin, M. Guenther, F. D. Stebila "A Cryptographic Analysis
of the TLS 1.3 draft-10 Full and Pre-shared Key Handshake Protocol" TRON
2016 <https://eprint.iacr.org/2016/081>

Diffie, W. M. Hellman "New directions in cryptography" Institute of
Electrical and Electronics Engineers (IEEE) IEEE Transactions on Information
Theory vol. 22, no. 6, pp. 644-654 DOI 10.1109/tit.1976.1055638
<https://doi.org/10.1109/tit.1976.1055638>

Diffie, W. Van Oorschot, P. M. Wiener "Authentication and authenticated
key exchanges" Springer Science and Business Media LLC Designs, Codes and
Cryptography vol. 2, no. 2, pp. 107-125 DOI 10.1007/bf00124891
<https://doi.org/10.1007/bf00124891>

Weimer, F. "[SECURITY] [DSA 1571-1] New openssl packages fix predictable
random number generator" message to the debian-security-announce mailing
list <https://www.debian.org/security/2008/dsa-1571>

"Digital Signature Standard (DSS)" National Institute of Standards and
Technology (U.S.) DOI 10.6028/nist.fips.186-5 <https://doi.org/
10.6028/nist.fips.186-5>

Chen, L. Moody, D. Regenscheid, A. Robinson, A. K. Randall
"Recommendations for Discrete Logarithm-based Cryptography:: Elliptic Curve
Domain Parameters" National Institute of Standards and Technology DOI
10.6028/nist.sp.800-186 <https://doi.org/10.6028/nist.sp.800-186>

WHATWG "Fetch" WHATWG Living Standard <https://fetch.spec.whatwg.org/>
Commit snapshot: https://fetch.spec.whatwg.org/commit-snapshots/
4775fcb48042c8411df497c0b7cf167b4240004f/

Fischlin, M. F. Guenther "Replay Attacks on Zero Round-Trip Time: The
Case of the TLS 1.3 Handshake Candidates" Proceedings of Euro S&P 2017

<https://eprint.iacr.org/2017/082>

Fischlin, M. Guenther, F. Schmidt, B. B. Warinschi "Key Confirmation in
Key Exchange: A Formal Treatment and Implications for TLS 1.3" Proceedings
of IEEE Symposium on Security and Privacy (Oakland) 2016 DOI 10.1109/SP.
2016.34 <http://ieeexplore.ieee.org/document/7546517/>

Weimer, F. "Factoring RSA Keys With TLS Perfect Forward Secrecy" Red Hat
Blog <https://www.redhat.com/en/blog/factoring-rsa-keys-tls-
perfect-forward-secrecy>

Husák, M. Čermák, M. Jirsík, T. P. Čeleda "HTTPS traffic analysis and client
identification using passive SSL/TLS fingerprinting" Springer Science and
Business Media LLC EURASIP Journal on Information Security vol. 2016, no. 1
DOI 10.1186/s13635-016-0030-7 <https://doi.org/10.1186/
s13635-016-0030-7>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 93

https://eprint.iacr.org/2016/081
https://doi.org/10.1109/tit.1976.1055638
https://doi.org/10.1007/bf00124891
https://www.debian.org/security/2008/dsa-1571
https://doi.org/10.6028/nist.fips.186-5
https://doi.org/10.6028/nist.fips.186-5
https://doi.org/10.6028/nist.sp.800-186
https://fetch.spec.whatwg.org/
https://eprint.iacr.org/2017/082
http://ieeexplore.ieee.org/document/7546517/
https://www.redhat.com/en/blog/factoring-rsa-keys-tls-perfect-forward-secrecy
https://www.redhat.com/en/blog/factoring-rsa-keys-tls-perfect-forward-secrecy
https://doi.org/10.1186/s13635-016-0030-7
https://doi.org/10.1186/s13635-016-0030-7

[HGFS15]

[JSS15]

[Kraw10]

[Kraw16]

[KW16]

[LXZFH16]

[Mac17]

[MM24]

[PRE-RFC9849]

[PS18]

[PSK-FINISHED]

[REKEY]

, , , and ,
,

, 2015,
.

, , and ,
, ,

, , October 2015,
.

,
, , 2010, .

,
,

, October 2016, .

 and , ,
, March 2016, .

, , , , and ,
, ,

, , May 2016,
.

, , May 2017,
.

, , and ,
, , 29 September 2025,

.

, , , and , ,
, , December 2025,

.

 and ,
, 2018, .

, , , and ,
,

, 31 October 2015,
.

 and ,
, ,

, ,
, 2000,

.

Hlauschek, C. Gruber, M. Fankhauser, F. C. Schanes "Prying Open
Pandora's Box: KCI Attacks against TLS" Proceedings of USENIX Workshop on
Offensive Technologies <https://www.usenix.org/conference/woot15/
workshop-program/presentation/hlauschek>

Jager, T. Schwenk, J. J. Somorovsky "On the Security of TLS 1.3 and QUIC
Against Weaknesses in PKCS#1 v1.5 Encryption" ACM Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security pp.
1185-1196 DOI 10.1145/2810103.2813657 <https://doi.org/
10.1145/2810103.2813657>

Krawczyk, H. "Cryptographic Extraction and Key Derivation: The HKDF
Scheme" Proceedings of CRYPTO 2010 <https://eprint.iacr.org/2010/264>

Krawczyk, H. "A Unilateral-to-Mutual Authentication Compiler for Key
Exchange (with Applications to Client Authentication in TLS 1.3" Proceedings of
ACM CCS 2016 <https://eprint.iacr.org/2016/711>

Krawczyk, H. H. Wee "The OPTLS Protocol and TLS 1.3" Proceedings of
Euro S&P 2016 <https://eprint.iacr.org/2015/978>

Li, X. Xu, J. Zhang, Z. Feng, D. H. Hu "Multiple Handshakes Security of
TLS 1.3 Candidates" IEEE 2016 IEEE Symposium on Security and Privacy (SP)
pp. 486-505 DOI 10.1109/sp.2016.36 <https://doi.org/10.1109/sp.
2016.36>

MacCarthaigh, C. "Security Review of TLS1.3 0-RTT" <https://
github.com/tlswg/tls13-spec/issues/1001>

Moustafa, M. Sethi, M. T. Aura "Misbinding Raw Public Keys to Identities
in TLS" arxiv:2411.09770 <https://arxiv.org/pdf/
2411.09770>

Rescorla, E. Oku, K. Sullivan, N. C. A. Wood "TLS Encrypted Client Hello"
RFC PRE-RFC9849 DOI 10.17487/preRFC9849 <https://www.rfc-
editor.org/info/rfc9849>

Patton, C. T. Shrimpton "Partially specified channels: The TLS 1.3 record
layer without elision" <https://eprint.iacr.org/2018/634>

Cremers, C. Horvat, M. van der Merwe, T. S. Scott "Revision 10: possible
attack if client authentication is allowed during PSK" message to the TLS
mailing list <https://mailarchive.ietf.org/arch/msg/tls/
TugB5ddJu3nYg7chcyeIyUqWSbA/>

Abdalla, M. M. Bellare "Increasing the Lifetime of a Key: A Comparative
Analysis of the Security of Re-keying Techniques" Springer Berlin Heidelberg
Lecture Notes in Computer Science pp. 546-559 DOI 10.1007/3-540-44448-3_42
ISBN ["9783540414049", "9783540444480"] <https://doi.org/
10.1007/3-540-44448-3_42>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 94

https://www.usenix.org/conference/woot15/workshop-program/presentation/hlauschek
https://www.usenix.org/conference/woot15/workshop-program/presentation/hlauschek
https://doi.org/10.1145/2810103.2813657
https://doi.org/10.1145/2810103.2813657
https://eprint.iacr.org/2010/264
https://eprint.iacr.org/2016/711
https://eprint.iacr.org/2015/978
https://doi.org/10.1109/sp.2016.36
https://doi.org/10.1109/sp.2016.36
https://github.com/tlswg/tls13-spec/issues/1001
https://github.com/tlswg/tls13-spec/issues/1001
https://arxiv.org/pdf/2411.09770
https://arxiv.org/pdf/2411.09770
https://www.rfc-editor.org/info/rfc9849
https://www.rfc-editor.org/info/rfc9849
https://eprint.iacr.org/2018/634
https://mailarchive.ietf.org/arch/msg/tls/TugB5ddJu3nYg7chcyeIyUqWSbA/
https://mailarchive.ietf.org/arch/msg/tls/TugB5ddJu3nYg7chcyeIyUqWSbA/
https://doi.org/10.1007/3-540-44448-3_42
https://doi.org/10.1007/3-540-44448-3_42

[Res17a]

[Res17b]

[RFC2246]

[RFC3552]

[RFC4086]

[RFC4346]

[RFC4366]

[RFC4492]

[RFC5077]

[RFC5246]

[RFC5763]

[RFC5764]

, ,
, 5 December 2017,

.

, ,
, 22 December 2017,

.

 and , , ,
, January 1999, .

 and ,
, , , , July 2003,

.

, , and ,
, , , , June 2005,

.

 and ,
, , , April 2006,

.

, , , , and ,
, , ,

April 2006, .

, , , , and ,
, ,

, May 2006, .

, , , and ,
, ,

, January 2008, .

 and ,
, , , August 2008,

.

, , and ,

, , , May 2010,
.

 and ,
,

, , May 2010,
.

Rescorla, E. "Preliminary data on Firefox TLS 1.3 Middlebox experiment"
message to the TLS mailing list <https://mailarchive.ietf.org/
arch/msg/tls/RBp0X-OWNuWXugFJRV7c_hIU0dI/>

Rescorla, E. "More compatibility measurement results" message to the TLS
mailing list <https://mailarchive.ietf.org/arch/msg/tls/6pGGT-
wm5vSkacMFPEPvFMEnj-M/>

Dierks, T. C. Allen "The TLS Protocol Version 1.0" RFC 2246 DOI 10.17487/
RFC2246 <https://www.rfc-editor.org/info/rfc2246>

Rescorla, E. B. Korver "Guidelines for Writing RFC Text on Security
Considerations" BCP 72 RFC 3552 DOI 10.17487/RFC3552 <https://
www.rfc-editor.org/info/rfc3552>

Eastlake 3rd, D. Schiller, J. S. Crocker "Randomness Requirements for
Security" BCP 106 RFC 4086 DOI 10.17487/RFC4086 <https://
www.rfc-editor.org/info/rfc4086>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.1" RFC 4346 DOI 10.17487/RFC4346 <https://www.rfc-editor.org/
info/rfc4346>

Blake-Wilson, S. Nystrom, M. Hopwood, D. Mikkelsen, J. T. Wright
"Transport Layer Security (TLS) Extensions" RFC 4366 DOI 10.17487/RFC4366

<https://www.rfc-editor.org/info/rfc4366>

Blake-Wilson, S. Bolyard, N. Gupta, V. Hawk, C. B. Moeller "Elliptic Curve
Cryptography (ECC) Cipher Suites for Transport Layer Security (TLS)" RFC 4492
DOI 10.17487/RFC4492 <https://www.rfc-editor.org/info/rfc4492>

Salowey, J. Zhou, H. Eronen, P. H. Tschofenig "Transport Layer Security
(TLS) Session Resumption without Server-Side State" RFC 5077 DOI 10.17487/
RFC5077 <https://www.rfc-editor.org/info/rfc5077>

Dierks, T. E. Rescorla "The Transport Layer Security (TLS) Protocol Version
1.2" RFC 5246 DOI 10.17487/RFC5246 <https://www.rfc-editor.org/
info/rfc5246>

Fischl, J. Tschofenig, H. E. Rescorla "Framework for Establishing a Secure
Real-time Transport Protocol (SRTP) Security Context Using Datagram Transport
Layer Security (DTLS)" RFC 5763 DOI 10.17487/RFC5763 <https://
www.rfc-editor.org/info/rfc5763>

McGrew, D. E. Rescorla "Datagram Transport Layer Security (DTLS)
Extension to Establish Keys for the Secure Real-time Transport Protocol (SRTP)"
RFC 5764 DOI 10.17487/RFC5764 <https://www.rfc-editor.org/info/
rfc5764>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 95

https://mailarchive.ietf.org/arch/msg/tls/RBp0X-OWNuWXugFJRV7c_hIU0dI/
https://mailarchive.ietf.org/arch/msg/tls/RBp0X-OWNuWXugFJRV7c_hIU0dI/
https://mailarchive.ietf.org/arch/msg/tls/6pGGT-wm5vSkacMFPEPvFMEnj-M/
https://mailarchive.ietf.org/arch/msg/tls/6pGGT-wm5vSkacMFPEPvFMEnj-M/
https://www.rfc-editor.org/info/rfc2246
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc3552
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4086
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4346
https://www.rfc-editor.org/info/rfc4366
https://www.rfc-editor.org/info/rfc4492
https://www.rfc-editor.org/info/rfc5077
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5246
https://www.rfc-editor.org/info/rfc5763
https://www.rfc-editor.org/info/rfc5763
https://www.rfc-editor.org/info/rfc5764
https://www.rfc-editor.org/info/rfc5764

[RFC5929]

[RFC6091]

[RFC6101]

[RFC6176]

[RFC6347]

[RFC6520]

[RFC7250]

[RFC7465]

[RFC7568]

[RFC7624]

[RFC7685]

[RFC7924]

, , and , , ,
, July 2010, .

 and ,
, , , February

2011, .

, , and ,
, , , August 2011,

.

 and , ,
, , March 2011,

.

 and , ,
, , January 2012,
.

, , and ,
, ,

, February 2012,
.

, , , , and ,

, , , June 2014,
.

, , , ,
February 2015, .

, , , and ,
, , , June 2015,

.

, , , , , , and
,

, , , August 2015,
.

, ,
, , October 2015,
.

 and ,
, , , July 2016,

.

Altman, J. Williams, N. L. Zhu "Channel Bindings for TLS" RFC 5929 DOI
10.17487/RFC5929 <https://www.rfc-editor.org/info/rfc5929>

Mavrogiannopoulos, N. D. Gillmor "Using OpenPGP Keys for Transport
Layer Security (TLS) Authentication" RFC 6091 DOI 10.17487/RFC6091

<https://www.rfc-editor.org/info/rfc6091>

Freier, A. Karlton, P. P. Kocher "The Secure Sockets Layer (SSL) Protocol
Version 3.0" RFC 6101 DOI 10.17487/RFC6101 <https://www.rfc-
editor.org/info/rfc6101>

Turner, S. T. Polk "Prohibiting Secure Sockets Layer (SSL) Version 2.0" RFC
6176 DOI 10.17487/RFC6176 <https://www.rfc-editor.org/info/
rfc6176>

Rescorla, E. N. Modadugu "Datagram Transport Layer Security Version 1.2"
RFC 6347 DOI 10.17487/RFC6347 <https://www.rfc-editor.org/info/
rfc6347>

Seggelmann, R. Tuexen, M. M. Williams "Transport Layer Security (TLS)
and Datagram Transport Layer Security (DTLS) Heartbeat Extension" RFC 6520
DOI 10.17487/RFC6520 <https://www.rfc-editor.org/info/
rfc6520>

Wouters, P., Ed. Tschofenig, H., Ed. Gilmore, J. Weiler, S. T. Kivinen "Using
Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport
Layer Security (DTLS)" RFC 7250 DOI 10.17487/RFC7250 <https://
www.rfc-editor.org/info/rfc7250>

Popov, A. "Prohibiting RC4 Cipher Suites" RFC 7465 DOI 10.17487/RFC7465
<https://www.rfc-editor.org/info/rfc7465>

Barnes, R. Thomson, M. Pironti, A. A. Langley "Deprecating Secure
Sockets Layer Version 3.0" RFC 7568 DOI 10.17487/RFC7568 <https://
www.rfc-editor.org/info/rfc7568>

Barnes, R. Schneier, B. Jennings, C. Hardie, T. Trammell, B. Huitema, C. D.
Borkmann "Confidentiality in the Face of Pervasive Surveillance: A Threat
Model and Problem Statement" RFC 7624 DOI 10.17487/RFC7624
<https://www.rfc-editor.org/info/rfc7624>

Langley, A. "A Transport Layer Security (TLS) ClientHello Padding Extension"
RFC 7685 DOI 10.17487/RFC7685 <https://www.rfc-editor.org/info/
rfc7685>

Santesson, S. H. Tschofenig "Transport Layer Security (TLS) Cached
Information Extension" RFC 7924 DOI 10.17487/RFC7924 <https://
www.rfc-editor.org/info/rfc7924>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 96

https://www.rfc-editor.org/info/rfc5929
https://www.rfc-editor.org/info/rfc6091
https://www.rfc-editor.org/info/rfc6101
https://www.rfc-editor.org/info/rfc6101
https://www.rfc-editor.org/info/rfc6176
https://www.rfc-editor.org/info/rfc6176
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6347
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc6520
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7250
https://www.rfc-editor.org/info/rfc7465
https://www.rfc-editor.org/info/rfc7568
https://www.rfc-editor.org/info/rfc7568
https://www.rfc-editor.org/info/rfc7624
https://www.rfc-editor.org/info/rfc7685
https://www.rfc-editor.org/info/rfc7685
https://www.rfc-editor.org/info/rfc7924
https://www.rfc-editor.org/info/rfc7924

[RFC8305]

[RFC8422]

[RFC8446]

[RFC8447]

[RFC8448]

[RFC8449]

[RFC8773]

[RFC8844]

[RFC8870]

[RFC8879]

[RFC8937]

[RFC9001]

[RFC9112]

[RFC9146]

 and ,
, , , December 2017,

.

, , and ,
,

, , August 2018,
.

, , ,
, August 2018, .

 and , , ,
, August 2018, .

, , ,
, January 2019, .

, , ,
, August 2018, .

,
, , , March 2020,

.

 and ,
, , ,

January 2021, .

, , , , and ,
, , ,

January 2021, .

 and , , ,
, December 2020, .

, , , , and ,
, , , October

2020, .

 and , , ,
, May 2021, .

, , and , , ,
, , June 2022,

.

, , , and ,
, , , March 2022,

.

Schinazi, D. T. Pauly "Happy Eyeballs Version 2: Better Connectivity Using
Concurrency" RFC 8305 DOI 10.17487/RFC8305 <https://
www.rfc-editor.org/info/rfc8305>

Nir, Y. Josefsson, S. M. Pegourie-Gonnard "Elliptic Curve Cryptography
(ECC) Cipher Suites for Transport Layer Security (TLS) Versions 1.2 and Earlier"
RFC 8422 DOI 10.17487/RFC8422 <https://www.rfc-editor.org/info/
rfc8422>

Rescorla, E. "The Transport Layer Security (TLS) Protocol Version 1.3" RFC 8446
DOI 10.17487/RFC8446 <https://www.rfc-editor.org/info/rfc8446>

Salowey, J. S. Turner "IANA Registry Updates for TLS and DTLS" RFC 8447
DOI 10.17487/RFC8447 <https://www.rfc-editor.org/info/rfc8447>

Thomson, M. "Example Handshake Traces for TLS 1.3" RFC 8448 DOI 10.17487/
RFC8448 <https://www.rfc-editor.org/info/rfc8448>

Thomson, M. "Record Size Limit Extension for TLS" RFC 8449 DOI 10.17487/
RFC8449 <https://www.rfc-editor.org/info/rfc8449>

Housley, R. "TLS 1.3 Extension for Certificate-Based Authentication with an
External Pre-Shared Key" RFC 8773 DOI 10.17487/RFC8773
<https://www.rfc-editor.org/info/rfc8773>

Thomson, M. E. Rescorla "Unknown Key-Share Attacks on Uses of TLS with
the Session Description Protocol (SDP)" RFC 8844 DOI 10.17487/RFC8844

<https://www.rfc-editor.org/info/rfc8844>

Jennings, C. Mattsson, J. McGrew, D. Wing, D. F. Andreasen "Encrypted
Key Transport for DTLS and Secure RTP" RFC 8870 DOI 10.17487/RFC8870

<https://www.rfc-editor.org/info/rfc8870>

Ghedini, A. V. Vasiliev "TLS Certificate Compression" RFC 8879 DOI
10.17487/RFC8879 <https://www.rfc-editor.org/info/rfc8879>

Cremers, C. Garratt, L. Smyshlyaev, S. Sullivan, N. C. Wood "Randomness
Improvements for Security Protocols" RFC 8937 DOI 10.17487/RFC8937

<https://www.rfc-editor.org/info/rfc8937>

Thomson, M., Ed. S. Turner, Ed. "Using TLS to Secure QUIC" RFC 9001 DOI
10.17487/RFC9001 <https://www.rfc-editor.org/info/rfc9001>

Fielding, R., Ed. Nottingham, M., Ed. J. Reschke, Ed. "HTTP/1.1" STD 99 RFC
9112 DOI 10.17487/RFC9112 <https://www.rfc-editor.org/info/
rfc9112>

Rescorla, E., Ed. Tschofenig, H., Ed. Fossati, T. A. Kraus "Connection
Identifier for DTLS 1.2" RFC 9146 DOI 10.17487/RFC9146 <https://
www.rfc-editor.org/info/rfc9146>

RFC 9846 TLS January 2026

Rescorla Standards Track Page 97

https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8305
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8422
https://www.rfc-editor.org/info/rfc8446
https://www.rfc-editor.org/info/rfc8447
https://www.rfc-editor.org/info/rfc8448
https://www.rfc-editor.org/info/rfc8449
https://www.rfc-editor.org/info/rfc8773
https://www.rfc-editor.org/info/rfc8844
https://www.rfc-editor.org/info/rfc8870
https://www.rfc-editor.org/info/rfc8879
https://www.rfc-editor.org/info/rfc8937
https://www.rfc-editor.org/info/rfc9001
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9112
https://www.rfc-editor.org/info/rfc9146
https://www.rfc-editor.org/info/rfc9146

[RFC9147]

[RFC9149]

[RFC9162]

[RFC9257]

[RFC9258]

[RFC9345]

[RFC9525]

[RSA]

[Selfie]

[SIGMA]

[SLOTH]

[SSL2]

, , and ,
, , , April

2022, .

, , and , , ,
, April 2022, .

, , and , ,
, , December 2021,

.

, , , and ,
, , , July 2022,

.

 and ,
, , , July 2022,

.

, , , and ,
, , , July 2023,

.

 and , , ,
, November 2023, .

, , and ,
,

, ,
, February 1978, .

 and , , 2019,
.

,
, ,

, ,
, 2003,

.

 and ,
, ,

,
, 2016, .

, , 9 February 1995.

Rescorla, E. Tschofenig, H. N. Modadugu "The Datagram Transport Layer
Security (DTLS) Protocol Version 1.3" RFC 9147 DOI 10.17487/RFC9147

<https://www.rfc-editor.org/info/rfc9147>

Pauly, T. Schinazi, D. C.A. Wood "TLS Ticket Requests" RFC 9149 DOI
10.17487/RFC9149 <https://www.rfc-editor.org/info/rfc9149>

Laurie, B. Messeri, E. R. Stradling "Certificate Transparency Version 2.0"
RFC 9162 DOI 10.17487/RFC9162 <https://www.rfc-editor.org/
info/rfc9162>

Housley, R. Hoyland, J. Sethi, M. C. A. Wood "Guidance for External Pre-
Shared Key (PSK) Usage in TLS" RFC 9257 DOI 10.17487/RFC9257
<https://www.rfc-editor.org/info/rfc9257>

Benjamin, D. C. A. Wood "Importing External Pre-Shared Keys (PSKs) for
TLS 1.3" RFC 9258 DOI 10.17487/RFC9258 <https://www.rfc-
editor.org/info/rfc9258>

Barnes, R. Iyengar, S. Sullivan, N. E. Rescorla "Delegated Credentials for
TLS and DTLS" RFC 9345 DOI 10.17487/RFC9345 <https://www.rfc-
editor.org/info/rfc9345>

Saint-Andre, P. R. Salz "Service Identity in TLS" RFC 9525 DOI 10.17487/
RFC9525 <https://www.rfc-editor.org/info/rfc9525>

Rivest, R. Shamir, A. L. Adleman "A method for obtaining digital
signatures and public-key cryptosystems" Association for Computing
Machinery (ACM) Communications of the ACM vol. 21, no. 2, pp. 120-126 DOI
10.1145/359340.359342 <https://doi.org/10.1145/359340.359342>

Drucker, N. S. Gueron "Selfie: reflections on TLS 1.3 with PSK"
<https://eprint.iacr.org/2019/347>

Krawczyk, H. "SIGMA: The ‘SIGn-and-MAc’ Approach to Authenticated Diffie-
Hellman and Its Use in the IKE Protocols" Springer Berlin Heidelberg Lecture
Notes in Computer Science pp. 400-425 DOI 10.1007/978-3-540-45146-4_24 ISBN
["9783540406747", "9783540451464"] <https://doi.org/
10.1007/978-3-540-45146-4_24>

Bhargavan, K. G. Leurent "Transcript Collision Attacks: Breaking
Authentication in TLS, IKE, and SSH" Internet Society Proceedings 2016
Network and Distributed System Security Symposium DOI 10.14722/ndss.
2016.23418 <https://doi.org/10.14722/ndss.2016.23418>

Hickman, K. "The SSL Protocol"

RFC 9846 TLS January 2026

Rescorla Standards Track Page 98

https://www.rfc-editor.org/info/rfc9147
https://www.rfc-editor.org/info/rfc9149
https://www.rfc-editor.org/info/rfc9162
https://www.rfc-editor.org/info/rfc9162
https://www.rfc-editor.org/info/rfc9257
https://www.rfc-editor.org/info/rfc9258
https://www.rfc-editor.org/info/rfc9258
https://www.rfc-editor.org/info/rfc9345
https://www.rfc-editor.org/info/rfc9345
https://www.rfc-editor.org/info/rfc9525
https://doi.org/10.1145/359340.359342
https://eprint.iacr.org/2019/347
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.1007/978-3-540-45146-4_24
https://doi.org/10.14722/ndss.2016.23418

[TIMING]

[X501]

 and , ,
, 2003,

.

,
, , , October

2019, .

Boneh, D. D. Brumley "Remote Timing Attacks Are Practical" 12th USENIX
Security Symposium (USENIX Security 03) <https://www.usenix.org/
conference/12th-usenix-security-symposium/remote-timing-attacks-are-
practical>

ITU-T "Information Technology - Open Systems Interconnection - The
Directory: Models" ITU-T Recommendation X.501 ISO/IEC 9594-2:2020

<https://www.itu.int/rec/T-REC-X.501-201910-I/en>

Appendix A. State Machine
This appendix provides a summary of the legal state transitions for the client and server
handshakes. State names (in all capitals, e.g., START) have no formal meaning but are provided
for ease of comprehension. Actions which are taken only in certain circumstances are indicated
in []. The notation "K_{send,recv} = foo" means "set the send/recv key to the given key".

RFC 9846 TLS January 2026

Rescorla Standards Track Page 99

https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.usenix.org/conference/12th-usenix-security-symposium/remote-timing-attacks-are-practical
https://www.itu.int/rec/T-REC-X.501-201910-I/en

A.1. Client

Note that with the transitions as shown above, clients may send alerts that derive from post-
ServerHello messages in the clear or with the early data keys. If clients need to send such alerts,
they first rekey to the handshake keys if possible.

START
Send ClientHello Recv HelloRetryRequest

[K_send = early data]

WAIT_SH
Recv ServerHello
K_recv = handshake

Can
send WAIT_EE

early Recv EncryptedExtensions
data

Using Using certificate
PSK

WAIT_CERT_CR
Recv Recv CertificateRequest

Certificate
WAIT_CERT

Recv Certificate

WAIT_CV
Recv CertificateVerify

WAIT_FINISHED
Recv Finished
[Send EndOfEarlyData]
K_send = handshake
[Send Certificate [+ CertificateVerify]]

Can send Send Finished
app data K_send = K_recv = application
after here

CONNECTED

SHOULD

RFC 9846 TLS January 2026

Rescorla Standards Track Page 100

A.2. Server

START
Recv ClientHello Send HelloRetryRequest

RECVD_CH
Select parameters

NEGOTIATED
Send ServerHello
K_send = handshake
Send EncryptedExtensions
[Send CertificateRequest]

Can send [Send Certificate + CertificateVerify]
app data Send Finished
after K_send = application
here

No 0-RTT 0-RTT

K_recv = handshake K_recv = early data
[Skip decrypt errors] WAIT_EOED

Recv Recv EndOfEarlyData
early data K_recv = handshake

WAIT_FLIGHT2

No auth Cert-based client auth

WAIT_CERT
Recv Recv Certificate

empty
Certificate WAIT_CV

Recv
CertificateVerify

WAIT_FINISHED
Recv Finished
K_recv = application

CONNECTED

RFC 9846 TLS January 2026

Rescorla Standards Track Page 101

Appendix B. Protocol Data Structures and Constant Values
This appendix provides the normative protocol types and the definitions for constants. Values
listed as "_RESERVED" were used in previous versions of TLS and are listed here for
completeness. TLS 1.3 implementations send them but might receive them from older
TLS implementations.

MUST NOT

B.1. Record Layer

 enum {
 invalid(0),
 change_cipher_spec(20),
 alert(21),
 handshake(22),
 application_data(23),
 (255)
 } ContentType;

 struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
 } TLSPlaintext;

 struct {
 opaque content[TLSPlaintext.length];
 ContentType type;
 uint8 zeros[length_of_padding];
 } TLSInnerPlaintext;

 struct {
 ContentType opaque_type = application_data; /* 23 */
 ProtocolVersion legacy_record_version = 0x0303; /* TLS v1.2 */
 uint16 length;
 opaque encrypted_record[TLSCiphertext.length];
 } TLSCiphertext;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 102

B.2. Alert Messages

 enum { warning(1), fatal(2), (255) } AlertLevel;

 enum {
 close_notify(0),
 unexpected_message(10),
 bad_record_mac(20),
 decryption_failed_RESERVED(21),
 record_overflow(22),
 decompression_failure_RESERVED(30),
 handshake_failure(40),
 no_certificate_RESERVED(41),
 bad_certificate(42),
 unsupported_certificate(43),
 certificate_revoked(44),
 certificate_expired(45),
 certificate_unknown(46),
 illegal_parameter(47),
 unknown_ca(48),
 access_denied(49),
 decode_error(50),
 decrypt_error(51),
 export_restriction_RESERVED(60),
 protocol_version(70),
 insufficient_security(71),
 internal_error(80),
 inappropriate_fallback(86),
 user_canceled(90),
 no_renegotiation_RESERVED(100),
 missing_extension(109),
 unsupported_extension(110),
 certificate_unobtainable_RESERVED(111),
 unrecognized_name(112),
 bad_certificate_status_response(113),
 bad_certificate_hash_value_RESERVED(114),
 unknown_psk_identity(115),
 certificate_required(116),
 general_error(117),
 no_application_protocol(120),
 (255)
 } AlertDescription;

 struct {
 AlertLevel level;
 AlertDescription description;
 } Alert;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 103

B.3. Handshake Protocol

 enum {
 hello_request_RESERVED(0),
 client_hello(1),
 server_hello(2),
 hello_verify_request_RESERVED(3),
 new_session_ticket(4),
 end_of_early_data(5),
 hello_retry_request_RESERVED(6),
 encrypted_extensions(8),
 certificate(11),
 server_key_exchange_RESERVED(12),
 certificate_request(13),
 server_hello_done_RESERVED(14),
 certificate_verify(15),
 client_key_exchange_RESERVED(16),
 finished(20),
 certificate_url_RESERVED(21),
 certificate_status_RESERVED(22),
 supplemental_data_RESERVED(23),
 key_update(24),
 message_hash(254),
 (255)
 } HandshakeType;

 struct {
 HandshakeType msg_type; /* handshake type */
 uint24 length; /* remaining bytes in message */
 select (Handshake.msg_type) {
 case client_hello: ClientHello;
 case server_hello: ServerHello;
 case end_of_early_data: EndOfEarlyData;
 case encrypted_extensions: EncryptedExtensions;
 case certificate_request: CertificateRequest;
 case certificate: Certificate;
 case certificate_verify: CertificateVerify;
 case finished: Finished;
 case new_session_ticket: NewSessionTicket;
 case key_update: KeyUpdate;
 };
 } Handshake;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 104

B.3.1. Key Exchange Messages

RFC 9846 TLS January 2026

Rescorla Standards Track Page 105

 uint16 ProtocolVersion;
 opaque Random[32];

 uint8 CipherSuite[2]; /* Cryptographic suite selector */

 struct {
 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
 Random random;
 opaque legacy_session_id<0..32>;
 CipherSuite cipher_suites<2..2^16-2>;
 opaque legacy_compression_methods<1..2^8-1>;
 Extension extensions<8..2^16-1>;
 } ClientHello;

 struct {
 ProtocolVersion legacy_version = 0x0303; /* TLS v1.2 */
 Random random;
 opaque legacy_session_id_echo<0..32>;
 CipherSuite cipher_suite;
 uint8 legacy_compression_method = 0;
 Extension extensions<6..2^16-1>;
 } ServerHello;

 struct {
 ExtensionType extension_type;
 opaque extension_data<0..2^16-1>;
 } Extension;

 enum {
 server_name(0), /* RFC 6066 */
 max_fragment_length(1), /* RFC 6066 */
 status_request(5), /* RFC 6066 */
 supported_groups(10), /* RFC 8422, 7919 */
 signature_algorithms(13), /* RFC 8446 */
 use_srtp(14), /* RFC 5764 */
 heartbeat(15), /* RFC 6520 */
 application_layer_protocol_negotiation(16), /* RFC 7301 */
 signed_certificate_timestamp(18), /* RFC 6962 */
 client_certificate_type(19), /* RFC 7250 */
 server_certificate_type(20), /* RFC 7250 */
 padding(21), /* RFC 7685 */
 pre_shared_key(41), /* RFC 8446 */
 early_data(42), /* RFC 8446 */
 supported_versions(43), /* RFC 8446 */
 cookie(44), /* RFC 8446 */
 psk_key_exchange_modes(45), /* RFC 8446 */
 certificate_authorities(47), /* RFC 8446 */
 oid_filters(48), /* RFC 8446 */
 post_handshake_auth(49), /* RFC 8446 */
 signature_algorithms_cert(50), /* RFC 8446 */
 key_share(51), /* RFC 8446 */
 (65535)
 } ExtensionType;

 struct {
 NamedGroup group;
 opaque key_exchange<1..2^16-1>;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 106

 } KeyShareEntry;

 struct {
 KeyShareEntry client_shares<0..2^16-1>;
 } KeyShareClientHello;

 struct {
 NamedGroup selected_group;
 } KeyShareHelloRetryRequest;

 struct {
 KeyShareEntry server_share;
 } KeyShareServerHello;

 struct {
 uint8 legacy_form = 4;
 opaque X[coordinate_length];
 opaque Y[coordinate_length];
 } UncompressedPointRepresentation;

 enum { psk_ke(0), psk_dhe_ke(1), (255) } PskKeyExchangeMode;

 struct {
 PskKeyExchangeMode ke_modes<1..255>;
 } PskKeyExchangeModes;

 struct {} Empty;

 struct {
 select (Handshake.msg_type) {
 case new_session_ticket: uint32 max_early_data_size;
 case client_hello: Empty;
 case encrypted_extensions: Empty;
 };
 } EarlyDataIndication;

 struct {
 opaque identity<1..2^16-1>;
 uint32 obfuscated_ticket_age;
 } PskIdentity;

 opaque PskBinderEntry<32..255>;

 struct {
 PskIdentity identities<7..2^16-1>;
 PskBinderEntry binders<33..2^16-1>;
 } OfferedPsks;

 struct {
 select (Handshake.msg_type) {
 case client_hello: OfferedPsks;
 case server_hello: uint16 selected_identity;
 };
 } PreSharedKeyExtension;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 107

B.3.1.1. Version Extension

 struct {
 select (Handshake.msg_type) {
 case client_hello:
 ProtocolVersion versions<2..254>;

 case server_hello: /* and HelloRetryRequest */
 ProtocolVersion selected_version;
 };
 } SupportedVersions;

B.3.1.2. Cookie Extension

 struct {
 opaque cookie<1..2^16-1>;
 } Cookie;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 108

B.3.1.3. Signature Algorithm Extension

 enum {
 /* RSASSA-PKCS1-v1_5 algorithms */
 rsa_pkcs1_sha256(0x0401),
 rsa_pkcs1_sha384(0x0501),
 rsa_pkcs1_sha512(0x0601),

 /* ECDSA algorithms */
 ecdsa_secp256r1_sha256(0x0403),
 ecdsa_secp384r1_sha384(0x0503),
 ecdsa_secp521r1_sha512(0x0603),

 /* RSASSA-PSS algorithms with public key OID rsaEncryption */
 rsa_pss_rsae_sha256(0x0804),
 rsa_pss_rsae_sha384(0x0805),
 rsa_pss_rsae_sha512(0x0806),

 /* EdDSA algorithms */
 ed25519(0x0807),
 ed448(0x0808),

 /* RSASSA-PSS algorithms with public key OID RSASSA-PSS */
 rsa_pss_pss_sha256(0x0809),
 rsa_pss_pss_sha384(0x080a),
 rsa_pss_pss_sha512(0x080b),

 /* Legacy algorithms */
 rsa_pkcs1_sha1(0x0201),
 ecdsa_sha1(0x0203),

 /* Reserved Code Points */
 obsolete_RESERVED(0x0000..0x0200),
 dsa_sha1_RESERVED(0x0202),
 obsolete_RESERVED(0x0204..0x0400),
 dsa_sha256_RESERVED(0x0402),
 obsolete_RESERVED(0x0404..0x0500),
 dsa_sha384_RESERVED(0x0502),
 obsolete_RESERVED(0x0504..0x0600),
 dsa_sha512_RESERVED(0x0602),
 obsolete_RESERVED(0x0604..0x06FF),
 private_use(0xFE00..0xFFFF),
 (0xFFFF)
 } SignatureScheme;

 struct {
 SignatureScheme supported_signature_algorithms<2..2^16-2>;
 } SignatureSchemeList;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 109

B.3.1.4. Supported Groups Extension

Values within "obsolete_RESERVED" ranges are used in previous versions of TLS and
be offered or negotiated by TLS 1.3 implementations. The obsolete curves have various known/
theoretical weaknesses or have had very little usage, in some cases only due to unintentional
server configuration issues. They are no longer considered appropriate for general use and
should be assumed to be potentially unsafe. The set of curves specified here is sufficient for
interoperability with all currently deployed and properly configured TLS implementations.

 enum {
 unallocated_RESERVED(0x0000),

 /* Elliptic Curve Groups (ECDHE) */
 obsolete_RESERVED(0x0001..0x0016),
 secp256r1(0x0017), secp384r1(0x0018), secp521r1(0x0019),
 obsolete_RESERVED(0x001A..0x001C),
 x25519(0x001D), x448(0x001E),

 /* Finite Field Groups (DHE) */
 ffdhe2048(0x0100), ffdhe3072(0x0101), ffdhe4096(0x0102),
 ffdhe6144(0x0103), ffdhe8192(0x0104),

 /* Reserved Code Points */
 ffdhe_private_use(0x01FC..0x01FF),
 ecdhe_private_use(0xFE00..0xFEFF),
 obsolete_RESERVED(0xFF01..0xFF02),
 (0xFFFF)
 } NamedGroup;

 struct {
 NamedGroup named_group_list<2..2^16-1>;
 } NamedGroupList;

MUST NOT

RFC 9846 TLS January 2026

Rescorla Standards Track Page 110

B.3.2. Server Parameters Messages

 opaque DistinguishedName<1..2^16-1>;

 struct {
 DistinguishedName authorities<3..2^16-1>;
 } CertificateAuthoritiesExtension;

 struct {
 opaque certificate_extension_oid<1..2^8-1>;
 opaque certificate_extension_values<0..2^16-1>;
 } OIDFilter;

 struct {
 OIDFilter filters<0..2^16-1>;
 } OIDFilterExtension;

 struct {} PostHandshakeAuth;

 struct {
 Extension extensions<0..2^16-1>;
 } EncryptedExtensions;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 Extension extensions<0..2^16-1>;
 } CertificateRequest;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 111

B.3.3. Authentication Messages

 enum {
 X509(0),
 OpenPGP_RESERVED(1),
 RawPublicKey(2),
 (255)
 } CertificateType;

 struct {
 select (certificate_type) {
 case RawPublicKey:
 /* From RFC 7250 ASN.1_subjectPublicKeyInfo */
 opaque ASN1_subjectPublicKeyInfo<1..2^24-1>;

 case X509:
 opaque cert_data<1..2^24-1>;
 };
 Extension extensions<0..2^16-1>;
 } CertificateEntry;

 struct {
 opaque certificate_request_context<0..2^8-1>;
 CertificateEntry certificate_list<0..2^24-1>;
 } Certificate;

 struct {
 SignatureScheme algorithm;
 opaque signature<0..2^16-1>;
 } CertificateVerify;

 struct {
 opaque verify_data[Hash.length];
 } Finished;

B.3.4. Ticket Establishment

 struct {
 uint32 ticket_lifetime;
 uint32 ticket_age_add;
 opaque ticket_nonce<0..255>;
 opaque ticket<1..2^16-1>;
 Extension extensions<0..2^16-1>;
 } NewSessionTicket;

RFC 9846 TLS January 2026

Rescorla Standards Track Page 112

B.3.5. Updating Keys

 struct {} EndOfEarlyData;

 enum {
 update_not_requested(0), update_requested(1), (255)
 } KeyUpdateRequest;

 struct {
 KeyUpdateRequest request_update;
 } KeyUpdate;

B.4. Cipher Suites
A cipher suite defines the pair of the AEAD algorithm and hash algorithm to be used with HKDF.
Cipher suite names follow the naming convention:

This specification defines the following cipher suites for use with TLS 1.3.

 CipherSuite TLS_AEAD_HASH = VALUE;

Component Contents

TLS The string "TLS"

AEAD The AEAD algorithm used for record protection

HASH The hash algorithm used with HKDF and Transcript-Hash

VALUE The two byte ID assigned for this cipher suite

Table 4: Cipher Suite Name Structure

Description Value

TLS_AES_128_GCM_SHA256 {0x13,0x01}

TLS_AES_256_GCM_SHA384 {0x13,0x02}

TLS_CHACHA20_POLY1305_SHA256 {0x13,0x03}

TLS_AES_128_CCM_SHA256 {0x13,0x04}

TLS_AES_128_CCM_8_SHA256 {0x13,0x05}

Table 5: Cipher Suite List

RFC 9846 TLS January 2026

Rescorla Standards Track Page 113

The corresponding AEAD algorithms AEAD_AES_128_GCM, AEAD_AES_256_GCM, and
AEAD_AES_128_CCM are defined in . AEAD_CHACHA20_POLY1305 is defined in

. AEAD_AES_128_CCM_8 is defined in . The corresponding hash algorithms
are defined in .

Although TLS 1.3 uses the same cipher suite space as previous versions of TLS, TLS 1.3 cipher
suites are defined differently, only specifying the symmetric ciphers, and cannot be used for TLS
1.2. Similarly, cipher suites for TLS 1.2 and lower cannot be used with TLS 1.3.

New cipher suite values are assigned by IANA as described in Section 11.

[RFC5116]
[RFC8439] [RFC6655]

[SHS]

Appendix C. Implementation Notes
The TLS protocol cannot prevent many common security mistakes. This appendix provides
several recommendations to assist implementors. provides test vectors for TLS 1.3
handshakes.

[RFC8448]

C.1. Random Number Generation and Seeding
TLS requires a cryptographically secure pseudorandom number generator (CSPRNG). A
performant and appropriately secure CSPRNG is provided by most operating systems or can be
sourced from a cryptographic library. It is to use an existing CSPRNG
implementation in preference to crafting a new one. Many adequate cryptographic libraries are
already available under favorable license terms. Should those prove unsatisfactory,
provides guidance on the generation of random values.

TLS uses random values (1) in public protocol fields such as the public Random values in the
ClientHello and ServerHello and (2) to generate keying material. With a properly functioning
CSPRNG, this does not present a security problem, as it is not feasible to determine the CSPRNG
state from its output. However, with a broken CSPRNG, it may be possible for an attacker to use
the public output to determine the CSPRNG internal state and thereby predict the keying
material, as documented in and .

Implementations can provide extra security against this form of attack by using separate
CSPRNGs to generate public and private values.

 describes a way for security protocol implementations to augment their
(pseudo)random number generators using a long-term private key and a deterministic signature
function. This improves randomness from broken or otherwise subverted random number
generators.

RECOMMENDED

[RFC4086]

[CHECKOWAY] [DSA-1571-1]

[RFC8937]

C.2. Certificates and Authentication
Implementations are responsible for verifying the integrity of certificates and should generally
support certificate revocation messages. Absent a specific indication from an application profile,
certificates should always be verified to ensure proper signing by a trusted certificate authority
(CA). The selection and addition of trust anchors should be done very carefully. Users should be

RFC 9846 TLS January 2026

Rescorla Standards Track Page 114

able to view information about the certificate and trust anchor. Applications also
enforce minimum and maximum key sizes. For example, certification paths containing keys or
signatures weaker than 2048-bit RSA or 224-bit ECDSA are not appropriate for secure
applications.

Note that it is common practice in some protocols to use the same certificate in both client and
server modes. This setting has not been extensively analyzed, and it is the responsibility of the
higher-level protocol to ensure there is no ambiguity in this case about the higher-level
semantics.

SHOULD

C.3. Implementation Pitfalls
Implementation experience has shown that certain parts of earlier TLS specifications are not
easy to understand and have been a source of interoperability and security problems. Many of
these areas have been clarified in this document but this appendix contains a short list of the
most important things that require special attention from implementors.

TLS protocol issues:

Do you correctly handle handshake messages that are fragmented to multiple TLS records
(see Section 5.1)? Do you correctly handle corner cases like a ClientHello that is split into
several small fragments? Do you fragment handshake messages that exceed the maximum
fragment size? In particular, the Certificate and CertificateRequest handshake messages can
be large enough to require fragmentation. Certificate compression as defined in
can be used to reduce the risk of fragmentation.
Do you ignore the TLS record layer version number in all unencrypted TLS records (see
Appendix E)?
Have you ensured that all support for SSL, RC4, EXPORT ciphers, and MD5 (via the
"signature_algorithms" extension) is completely removed from all possible configurations
that support TLS 1.3 or later, and that attempts to use these obsolete capabilities fail
correctly (see Appendix E)?
Do you handle TLS extensions in ClientHellos correctly, including unknown extensions?
When the server has requested a client certificate but no suitable certificate is available, do
you correctly send an empty Certificate message, instead of omitting the whole message (see
Section 4.4.2)?
When processing the plaintext fragment produced by AEAD-Decrypt and scanning from the
end for the ContentType, do you avoid scanning past the start of the cleartext in the event
that the peer has sent a malformed plaintext of all zeros?
Do you properly ignore unrecognized cipher suites (Section 4.1.2), hello extensions (Section
4.2), named groups (Section 4.2.7), key shares (Section 4.2.8), supported versions (Section
4.2.1), and signature algorithms (Section 4.2.3) in the ClientHello?
As a server, do you send a HelloRetryRequest to clients which support a compatible (EC)DHE
group but do not predict it in the "key_share" extension? As a client, do you correctly handle
a HelloRetryRequest from the server?

•

[RFC8879]

•

•

•
•

•

•

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 115

Cryptographic details:

What countermeasures do you use to prevent timing attacks ?
When using Diffie-Hellman key exchange, do you correctly preserve leading zero bytes in
the negotiated key (see Section 7.4.1)?
Does your TLS client check that the Diffie-Hellman parameters sent by the server are
acceptable (see Section 4.2.8.1)?
Do you use a strong and, most importantly, properly seeded random number generator (see
Appendix C.1) when generating Diffie-Hellman private values, the ECDSA "k" parameter, and
other security-critical values? It is that implementations implement
"deterministic ECDSA" as specified in . Note that purely deterministic Elliptic
Curve Cryptography (ECC) signatures such as deterministic ECDSA and EdDSA may be
vulnerable to certain side-channel and fault injection attacks in easily accessible Internet of
Things (IoT) devices.
Do you zero-pad Diffie-Hellman public key values and shared secrets to the group size (see
Section 4.2.8.1 and Section 7.4.1)?
Do you verify signatures after making them, to protect against RSA-CRT key leaks ?

• [TIMING]
•

•

•

RECOMMENDED
[RFC6979]

•

• [FW15]

C.4. Client and Server Tracking Prevention
Clients reuse a ticket for multiple connections. Reuse of a ticket allows passive
observers to correlate different connections. Servers that issue tickets offer at least as
many tickets as the number of connections that a client might use; for example, a web browser
using HTTP/1.1 might open six connections to a server. Servers issue new
tickets with every connection. This ensures that clients are always able to use a new ticket when
creating a new connection.

Offering a ticket to a server additionally allows the server to correlate different connections.
This is possible independent of ticket reuse. Client applications offer tickets across
connections that are meant to be uncorrelated. For example, defines network partition
keys to separate cache lookups in web browsers.

Clients and servers reuse a key share for multiple connections. Reuse of a key
share allows passive observers to correlate different connections. Reuse of a client key share to
the same server additionally allows the server to correlate different connections.

It is that the labels for external identities be selected so that they do not provide
additional information about the identity of the user. For instance, if the label includes an email
address, then this trivially identifies the user to a passive attacker, unlike the client's Certificate,
which is encrypted. There are a number of potential ways to avoid this risk, including (1) using
random identity labels, (2) pre-encrypting the identity under a key known to the server, or (3)
using the Encrypted Client Hello extension .

SHOULD NOT
SHOULD

[RFC9112] SHOULD

SHOULD NOT
[FETCH]

SHOULD NOT

RECOMMENDED

[PRE-RFC9849]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 116

If an external PSK identity is used for multiple connections, then it will generally be possible for
an external observer to track clients and/or servers across connections. Use of the Encrypted
Client Hello extension can mitigate this risk, as can mechanisms external to TLS
that rotate or encrypt the PSK identity.

[PRE-RFC9849]

C.5. Unauthenticated Operation
Previous versions of TLS offered explicitly unauthenticated cipher suites based on anonymous
Diffie-Hellman. These modes have been deprecated in TLS 1.3. However, it is still possible to
negotiate parameters that do not provide verifiable server authentication by several methods,
including:

Raw public keys .
Using a public key contained in a certificate but without validation of the certificate chain or
any of its contents.

Either technique used alone is vulnerable to man-in-the-middle attacks and therefore unsafe for
general use. However, it is also possible to bind such connections to an external authentication
mechanism via out-of-band validation of the server's public key, trust on first use, or a
mechanism such as channel bindings (though the channel bindings described in are
not defined for TLS 1.3). If no such mechanism is used, then the connection has no protection
against an active man-in-the-middle attack; applications use TLS in such a way absent
explicit configuration or a specific application profile.

• [RFC7250]
•

[RFC5929]

MUST NOT

Appendix D. Updates to TLS 1.2
To align with the names used this document, the following terms from are renamed:

The master secret, computed in , is renamed to the main secret. It is
referred to as main_secret in formulas and structures, instead of master_secret. However,
the label parameter to the PRF function is left unchanged for compatibility.
The premaster secret is renamed to the preliminary secret. It is referred to as
preliminary_secret in formulas and structures, instead of pre_master_secret.
The PreMasterSecret and EncryptedPreMasterSecret structures, defined in

, are renamed to PreliminarySecret and EncryptedPreliminarySecret, respectively.

Correspondingly, the extension defined in is renamed to the "Extended Main Secret"
extension. The extension code point is renamed to "extended_main_secret". The label parameter
to the PRF function in is left unchanged for compatibility.

[RFC5246]

• Section 8.1 of [RFC5246]

•

• Section 7.4.7.1 of
[RFC5246]

[RFC7627]

Section 4 of [RFC7627]

Appendix E. Backward Compatibility
The TLS protocol provides a built-in mechanism for version negotiation between endpoints
potentially supporting different versions of TLS.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 117

https://www.rfc-editor.org/rfc/rfc5246#section-8.1
https://www.rfc-editor.org/rfc/rfc5246#section-7.4.7.1
https://www.rfc-editor.org/rfc/rfc7627#section-4

TLS 1.x and SSL 3.0 use compatible ClientHello messages. Servers can also handle clients trying
to use future versions of TLS as long as the ClientHello format remains compatible and there is
at least one protocol version supported by both the client and the server.

Prior versions of TLS used the record layer version number (TLSPlaintext.legacy_record_version
and TLSCiphertext.legacy_record_version) for various purposes. As of TLS 1.3, this field is
deprecated. The value of TLSPlaintext.legacy_record_version be ignored by all
implementations. The value of TLSCiphertext.legacy_record_version is included in the additional
data for deprotection but otherwise be ignored or be validated to match the fixed
constant value. Version negotiation is performed using only the handshake versions
(ClientHello.legacy_version and ServerHello.legacy_version, as well as the ClientHello,
HelloRetryRequest, and ServerHello "supported_versions" extensions). To maximize
interoperability with older endpoints, implementations that negotiate the use of TLS 1.0-1.2

 set the record layer version number to the negotiated version for the ServerHello and
all records thereafter.

For maximum compatibility with previously non-standard behavior and misconfigured
deployments, all implementations support validation of certification paths based on the
expectations in this document, even when handling prior TLS versions' handshakes (see Section
4.4.2.2).

TLS 1.2 and prior supported an "Extended Main Secret" extension which digested
large parts of the handshake transcript into the secret and derived keys. Note this extension was
renamed in Appendix D. Because TLS 1.3 always hashes in the transcript up to the server
Finished, implementations which support both TLS 1.3 and earlier versions indicate the
use of the Extended Main Secret extension in their APIs whenever TLS 1.3 is used.

MUST

MAY MAY

SHOULD

SHOULD

[RFC7627]

SHOULD

E.1. Negotiating with an Older Server
A TLS 1.3 client who wishes to negotiate with servers that do not support TLS 1.3 will send a
normal TLS 1.3 ClientHello containing 0x0303 (TLS 1.2) in ClientHello.legacy_version but with
the correct version(s) in the "supported_versions" extension. If the server does not support TLS
1.3, it will respond with a ServerHello containing an older version number. If the client agrees to
use this version, the negotiation will proceed as appropriate for the negotiated protocol. A client
using a ticket for resumption initiate the connection using the version that was
previously negotiated.

Note that 0-RTT data is not compatible with older servers and be sent absent
knowledge that the server supports TLS 1.3. See Appendix E.3.

If the version chosen by the server is not supported by the client (or is not acceptable), the client
 abort the handshake with a "protocol_version" alert.

Some legacy server implementations are known to not implement the TLS specification properly
and might abort connections upon encountering TLS extensions or versions which they are not
aware of. Interoperability with buggy servers is a complex topic beyond the scope of this

SHOULD

SHOULD NOT

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 118

document. Multiple connection attempts may be required to negotiate a backward-compatible
connection; however, this practice is vulnerable to downgrade attacks and is

.
NOT

RECOMMENDED

E.2. Negotiating with an Older Client
A TLS server can also receive a ClientHello indicating a version number smaller than its highest
supported version. If the "supported_versions" extension is present, the server negotiate
using that extension as described in Section 4.2.1. If the "supported_versions" extension is not
present, the server negotiate the minimum of ClientHello.legacy_version and TLS 1.2. For
example, if the server supports TLS 1.0, 1.1, and 1.2, and legacy_version is TLS 1.0, the server will
proceed with a TLS 1.0 ServerHello. If the "supported_versions" extension is absent and the
server only supports versions greater than ClientHello.legacy_version, the server abort the
handshake with a "protocol_version" alert.

Note that earlier versions of TLS did not clearly specify the record layer version number value in
all cases (TLSPlaintext.legacy_record_version). Servers will receive various TLS 1.x versions in
this field, but its value always be ignored.

MUST

MUST

MUST

MUST

E.3. 0-RTT Backward Compatibility
0-RTT data is not compatible with older servers. An older server will respond to the ClientHello
with an older ServerHello, but it will not correctly skip the 0-RTT data and will fail to complete
the handshake. This can cause issues when a client attempts to use 0-RTT, particularly against
multi-server deployments. For example, a deployment could deploy TLS 1.3 gradually with some
servers implementing TLS 1.3 and some implementing TLS 1.2, or a TLS 1.3 deployment could be
downgraded to TLS 1.2.

A client that attempts to send 0-RTT data fail a connection if it receives a ServerHello with
TLS 1.2 or older. It can then retry the connection with 0-RTT disabled. To avoid a downgrade
attack, the client disable TLS 1.3, only 0-RTT.

To avoid this error condition, multi-server deployments ensure a uniform and stable
deployment of TLS 1.3 without 0-RTT prior to enabling 0-RTT.

MUST

SHOULD NOT

SHOULD

E.4. Middlebox Compatibility Mode
Field measurements have found that a significant number
of middleboxes misbehave when a TLS client/server pair negotiates TLS 1.3. Implementations
can increase the chance of making connections through those middleboxes by making the TLS
1.3 handshake look more like a TLS 1.2 handshake:

The client always provides a non-empty session ID in the ClientHello, as described in the
legacy_session_id section of Section 4.1.2.

[Ben17a] [Ben17b] [Res17a] [Res17b]

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 119

If not offering early data, the client sends a dummy change_cipher_spec record (see the third
paragraph of Section 5) immediately before its second flight. This may either be before its
second ClientHello or before its encrypted handshake flight. If offering early data, the record
is placed immediately after the first ClientHello.
The server sends a dummy change_cipher_spec record immediately after its first handshake
message. This may either be after a ServerHello or a HelloRetryRequest.

When put together, these changes make the TLS 1.3 handshake resemble TLS 1.2 session
resumption, which improves the chance of successfully connecting through middleboxes. This
"compatibility mode" is partially negotiated: the client can opt to provide a session ID or not, and
the server has to echo it. Either side can send change_cipher_spec at any time during the
handshake, as they must be ignored by the peer, but if the client sends a non-empty session ID,
the server send the change_cipher_spec as described in this appendix.

•

•

MUST

E.5. Security Restrictions Related to Backward Compatibility
Implementations negotiating the use of older versions of TLS prefer forward secret and
AEAD cipher suites, when available.

The security of RC4 cipher suites is considered insufficient for the reasons cited in .
Implementations offer or negotiate RC4 cipher suites for any version of TLS for any
reason.

Old versions of TLS permitted the use of very low strength ciphers. Ciphers with a strength less
than 112 bits be offered or negotiated for any version of TLS for any reason.

The security of SSL 2.0 , SSL 3.0 , TLS 1.0 , and TLS 1.1 are
considered insufficient for the reasons enumerated in , , and and
they be negotiated for any reason.

Implementations send an SSL version 2.0 compatible CLIENT-HELLO.
Implementations negotiate TLS 1.3 or later using an SSL version 2.0 compatible
CLIENT-HELLO. Implementations are to accept an SSL version 2.0
compatible CLIENT-HELLO to negotiate older versions of TLS.

Implementations send a ClientHello.legacy_version or ServerHello.legacy_version set
to 0x0300 or less. Any endpoint receiving a Hello message with ClientHello.legacy_version or
ServerHello.legacy_version set to 0x0300 abort the handshake with a "protocol_version"
alert.

Implementations send any records with a version less than 0x0300. Implementations
 accept any records with a version less than 0x0300 (but may inadvertently do so if

the record version number is ignored completely).

Implementations use the Truncated HMAC extension, defined in
, as it is not applicable to AEAD algorithms and has been shown to be insecure in some

scenarios.

SHOULD

[RFC7465]
MUST NOT

MUST NOT

[SSL2] [RFC6101] [RFC2246] [RFC4346]
[RFC6176] [RFC7568] [RFC8996]

MUST NOT

MUST NOT
MUST NOT

NOT RECOMMENDED

MUST NOT

MUST

MUST NOT
SHOULD NOT

MUST NOT Section 7 of
[RFC6066]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 120

https://www.rfc-editor.org/rfc/rfc6066#section-7

Appendix F. Overview of Security Properties
A complete security analysis of TLS is outside the scope of this document. In this appendix, we
provide an informal description of the desired properties as well as references to more detailed
work in the research literature which provides more formal definitions.

We cover properties of the handshake separately from those of the record layer.

Establishing the same session keys:

Secrecy of the session keys:

Peer Authentication:

Uniqueness of the session keys:

F.1. Handshake
The TLS handshake is an Authenticated Key Exchange (AKE) protocol which is intended to
provide both one-way authenticated (server-only) and mutually authenticated (client and
server) functionality. At the completion of the handshake, each side outputs its view of the
following values:

A set of "session keys" (the various secrets derived from the main secret) from which a set of
working keys can be derived. Note that when early data is in use, secrets are also derived
from the early secret. These enjoy somewhat weaker properties than those derived from the
main secret, as detailed below.
A set of cryptographic parameters (algorithms, etc.).
The identities of the communicating parties.

We assume the attacker to be an active network attacker, which means it has complete control
over the network used to communicate between the parties . Even under these
conditions, the handshake should provide the properties listed below. Note that these properties
are not necessarily independent, but reflect the protocol consumers' needs.

The handshake needs to output the same set of session keys
on both sides of the handshake, provided that it completes successfully on each endpoint (see

, Definition 1, part 1).

The shared session keys should be known only to the
communicating parties and not to the attacker (see ; Definition 1, part 2). Note that in a
unilaterally authenticated connection, the attacker can establish its own session keys with the
server, but those session keys are distinct from those established by the client.

The client's view of the peer identity should reflect the server's identity. If
the client is authenticated, the server's view of the peer identity should match the client's
identity.

Any two distinct handshakes should produce distinct,
unrelated session keys. Individual session keys produced by a handshake should also be
distinct and independent.

•

•
•

[RFC3552]

[CK01]

[CK01]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 121

Downgrade Protection:

Forward secret with respect to long-term keys:

Key Compromise Impersonation (KCI) resistance:

Protection of endpoint identities:

The cryptographic parameters should be the same on both sides and
should be the same as if the peers had been communicating in the absence of an attack (see

; Definitions 8 and 9).

If the long-term keying material (in this case the
signature keys in certificate-based authentication modes or the external/resumption PSK in
PSK with (EC)DHE modes) is compromised after the handshake is complete, this does not
compromise the security of the session key (see), as long as the session key itself
(and all material that could be used to recreate the session key) has been erased. In
particular, private keys corresponding to key shares, shared secrets, and keys derived in the
TLS key schedule other than binder_key, resumption_secret, and PSKs derived from the
resumption_secret also need to be erased. The forward secrecy property is not satisfied
when PSK is used in the "psk_ke" PskKeyExchangeMode. Failing to erase keys or secrets
intended to be ephemeral or connection-specific in effect creates additional long-term keys
that must be protected. Compromise of those long-term keys (even after the handshake is
complete) can result in loss of protection for the connection's traffic.

In a mutually authenticated connection with
certificates, compromising the long-term secret of one actor should not break that actor's
authentication of their peer in the given connection (see). For example, if a client's
signature key is compromised, it should not be possible to impersonate arbitrary servers to
that client in subsequent handshakes.

The server's identity (certificate) should be protected against
passive attackers. The client's identity (certificate) should be protected against both passive
and active attackers. This property does not hold for cipher suites without confidentiality;
while this specification does not define any such cipher suites, other documents may do so.

Informally, the signature-based modes of TLS 1.3 provide for the establishment of a unique,
secret, shared key established by an (EC)DHE key exchange and authenticated by the server's
signature over the handshake transcript, as well as tied to the server's identity by a MAC. If the
client is authenticated by a certificate, it also signs over the handshake transcript and provides a
MAC tied to both identities. describes the design and analysis of this type of key
exchange protocol. If fresh (EC)DHE keys are used for each connection, then the output keys are
forward secret.

The external PSK and resumption PSK bootstrap from a long-term shared secret into a unique
per-connection set of short-term session keys. This secret may have been established in a
previous handshake. If PSK with (EC)DHE key establishment is used, these session keys will also
be forward secret. The resumption PSK has been designed so that the resumption secret
computed by connection N and needed to form connection N+1 is separate from the traffic keys
used by connection N, thus providing forward secrecy between the connections. In addition, if
multiple tickets are established on the same connection, they are associated with different keys,
so compromise of the PSK associated with one ticket does not lead to the compromise of
connections established with PSKs associated with other tickets. This property is most
interesting if tickets are stored in a database (and so can be deleted) rather than if they are self-
encrypted.

[BBFGKZ16]

[DOW92]

[HGFS15]

[SIGMA]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 122

Forward secrecy limits the effect of key leakage in one direction (compromise of a key at time T2
does not compromise some key at time T1 where T1 < T2). Protection in the other direction
(compromise at time T1 does not compromise keys at time T2) can be achieved by rerunning
(EC)DHE. If a long-term authentication key has been compromised, a full handshake with
(EC)DHE gives protection against passive attackers. If the resumption_secret has been
compromised, a resumption handshake with (EC)DHE gives protection against passive attackers
and a full handshake with (EC)DHE gives protection against active attackers. If a traffic secret
has been compromised, any handshake with (EC)DHE gives protection against active attackers.
Using the terms in , forward secrecy without rerunning (EC)DHE does not stop an
attacker from doing static key exfiltration. After key exfiltration of application_traffic_secret_N,
an attacker can, e.g., passively eavesdrop on all future data sent on the connection including
data encrypted with application_traffic_secret_N+1, application_traffic_secret_N+2, etc.
Frequently rerunning (EC)DHE forces an attacker to do dynamic key exfiltration (or content
exfiltration).

The PSK binder value forms a binding between a PSK and the current handshake, as well as
between the session where the PSK was established and the current session. This binding
transitively includes the original handshake transcript, because that transcript is digested into
the values which produce the resumption secret. This requires that both the KDF used to
produce the resumption secret and the MAC used to compute the binder be collision resistant.
See Appendix F.1.1 for more on this. Note: The binder does not cover the binder values from
other PSKs, though they are included in the Finished MAC.

Note: This specification does not currently permit the server to send a certificate_request
message in non-certificate-based handshakes (e.g., PSK). If this restriction were to be relaxed in
future, the client's signature would not cover the server's certificate directly. However, if the PSK
was established through a NewSessionTicket, the client's signature would transitively cover the
server's certificate through the PSK binder. describes a concrete attack on
constructions that do not bind to the server's certificate (see also). It is unsafe to use
certificate-based client authentication when the client might potentially share the same PSK/key-
id pair with two different endpoints. In the absence of some other specification to the contrary,
implementations combine external PSKs with certificate-based authentication of
either the client or server. provides an extension to permit this, but has not received
the level of analysis as this specification.

If an exporter is used, then it produces values which are unique and secret (because they are
generated from a unique session key). Exporters computed with different labels and contexts are
computationally independent, so it is not feasible to compute one from another or the session
secret from the exported value. Note: Exporters can produce arbitrary-length values; if
exporters are to be used as channel bindings, the exported value be large enough to
provide collision resistance. The exporters provided in TLS 1.3 are derived from the same
Handshake Contexts as the early traffic keys and the application traffic keys, respectively, and
thus have similar security properties. Note that they do not include the client's certificate; future
applications which wish to bind to the client's certificate may need to define a new exporter that
includes the full handshake transcript.

[RFC7624]

[PSK-FINISHED]
[Kraw16]

MUST NOT
[RFC8773]

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 123

For all handshake modes, the Finished MAC (and, where present, the signature) prevents
downgrade attacks. In addition, the use of certain bytes in the random nonces as described in
Section 4.1.3 allows the detection of downgrade to previous TLS versions. See for
more details on TLS 1.3 and downgrade.

As soon as the client and the server have exchanged enough information to establish shared
keys, the remainder of the handshake is encrypted, thus providing protection against passive
attackers, even if the computed shared key is not authenticated. Because the server
authenticates before the client, the client can ensure that if it authenticates to the server, it only
reveals its identity to an authenticated server. Note that implementations must use the provided
record-padding mechanism during the handshake to avoid leaking information about the
identities due to length. The client's proposed PSK identities are not encrypted, nor is the one
that the server selects.

[BBFGKZ16]

F.1.1. Key Derivation and HKDF

Key derivation in TLS 1.3 uses HKDF as defined in and its two components, HKDF-
Extract and HKDF-Expand. The full rationale for the HKDF construction can be found in

 and the rationale for the way it is used in TLS 1.3 in . Throughout this
document, each application of HKDF-Extract is followed by one or more invocations of HKDF-
Expand. This ordering should always be followed (including in future revisions of this
document); in particular, one use an output of HKDF-Extract as an input to another
application of HKDF-Extract without an HKDF-Expand in between. Multiple applications of
HKDF-Expand to some of the same inputs are allowed as long as these are differentiated via the
key and/or the labels.

Note that HKDF-Expand implements a pseudorandom function (PRF) with both inputs and
outputs of variable length. In some of the uses of HKDF in this document (e.g., for generating
exporters and the resumption_secret), it is necessary that the application of HKDF-Expand be
collision resistant; namely, it should be infeasible to find two different inputs to HKDF-Expand
that output the same value. This requires the underlying hash function to be collision resistant
and the output length from HKDF-Expand to be of size at least 256 bits (or as much as needed for
the hash function to prevent finding collisions).

[RFC5869]

[Kraw10] [KW16]

SHOULD NOT

F.1.2. Certificate-Based Client Authentication

A client that has sent certificate-based authentication data to a server, either during the
handshake or in post-handshake authentication, cannot be sure whether the server afterwards
considers the client to be authenticated or not. If the client needs to determine if the server
considers the connection to be unilaterally or mutually authenticated, this has to be provisioned
by the application layer. See for details. In addition, the analysis of post-handshake
authentication from shows that the client identified by the certificate sent in the post-
handshake phase possesses the traffic key. This party is therefore the client that participated in
the original handshake or one to whom the original client delegated the traffic key (assuming
that the traffic key has not been compromised).

[CHHSV17]
[Kraw16]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 124

F.1.3. 0-RTT

The 0-RTT mode of operation generally provides security properties similar to those of 1-RTT
data, with the two exceptions that the 0-RTT encryption keys do not provide full forward secrecy
and that the server is not able to guarantee uniqueness of the handshake (non-replayability)
without keeping potentially undue amounts of state. See Section 8 for mechanisms to limit the
exposure to replay.

F.1.4. Exporter Independence

The exporter_secret and early_exporter_secret are derived to be independent of the traffic keys
and therefore do not represent a threat to the security of traffic encrypted with those keys.
However, because these secrets can be used to compute any exporter value, they be
erased as soon as possible. If the total set of exporter labels is known, then implementations

 pre-compute the inner Derive-Secret stage of the exporter computation for all those
labels, then erase the [early_]exporter_secret, followed by each inner values as soon as it is
known that it will not be needed again.

SHOULD

SHOULD

F.1.5. Post-Compromise Security

TLS does not provide security for handshakes which take place after the peer's long-term secret
(signature key or external PSK) is compromised. It therefore does not provide post-compromise
security , sometimes also referred to as backwards or future secrecy. This is in contrast
to KCI resistance, which describes the security guarantees that a party has after its own long-
term secret has been compromised.

[CCG16]

F.1.6. External References

The reader should refer to the following references for analysis of the TLS handshake: ,
, , , , , , , and .

[DFGS15]
[CHSV16] [DFGS16] [KW16] [Kraw16] [FGSW16] [LXZFH16] [FG17] [BBK17]

Confidentiality:

Integrity:

Order protection/non-replayability:

F.2. Record Layer
The record layer depends on the handshake producing strong traffic secrets which can be used
to derive bidirectional encryption keys and nonces. Assuming that is true, and the keys are used
for no more data than indicated in Section 5.5, then the record layer should provide the
following guarantees:

An attacker should not be able to determine the plaintext contents of a given
record.

An attacker should not be able to craft a new record which is different from an
existing record which will be accepted by the receiver.

An attacker should not be able to cause the receiver to
accept a record which it has already accepted or cause the receiver to accept record N+1
without having first processed record N.

RFC 9846 TLS January 2026

Rescorla Standards Track Page 125

Length concealment:

Forward secrecy after key change:

Given a record with a given external length, the attacker should not be
able to determine the amount of the record that is content versus padding.

If the traffic key update mechanism described in Section
4.6.3 has been used and the previous generation key is deleted, an attacker who compromises
the endpoint should not be able to decrypt traffic encrypted with the old key.

Informally, TLS 1.3 provides these properties by AEAD-protecting the plaintext with a strong key.
AEAD encryption provides confidentiality and integrity for the data. Non-replayability
is provided by using a separate nonce for each record, with the nonce being derived from the
record sequence number (Section 5.3), with the sequence number being maintained
independently at both sides; thus, records which are delivered out of order result in AEAD
deprotection failures. In order to prevent mass cryptanalysis when the same plaintext is
repeatedly encrypted by different users under the same key (as is commonly the case for HTTP),
the nonce is formed by mixing the sequence number with a secret per-connection initialization
vector derived along with the traffic keys. See for analysis of this construction.

The rekeying technique in TLS 1.3 (see Section 7.2) follows the construction of the serial
generator as discussed in , which shows that rekeying can allow keys to be used for a
larger number of encryptions than without rekeying. This relies on the security of the HKDF-
Expand-Label function as a pseudorandom function (PRF). In addition, as long as this function is
truly one way, it is not possible to compute traffic keys from prior to a key change (forward
secrecy).

TLS does not provide security for data which is communicated on a connection after a traffic
secret of that connection is compromised. That is, TLS does not provide post-compromise
security/future secrecy/backward secrecy with respect to the traffic secret. Indeed, an attacker
who learns a traffic secret can compute all future traffic secrets on that connection. Systems
which want such guarantees need to do a fresh handshake and establish a new connection with
an (EC)DHE exchange.

[RFC5116]

[BT16]

[REKEY]

F.2.1. External References

The reader should refer to the following references for analysis of the TLS record layer:
, , , , and .[BMMRT15] [BT16] [BDFKPPRSZZ16] [BBK17] [PS18]

F.3. Traffic Analysis
TLS is susceptible to a variety of traffic analysis attacks based on observing the length and
timing of encrypted packets . This is particularly easy when there is a small set
of possible messages to be distinguished, such as for a video server hosting a fixed corpus of
content, but still provides usable information even in more complicated scenarios.

TLS does not provide any specific defenses against this form of attack but does include a padding
mechanism for use by applications: The plaintext protected by the AEAD function consists of
content plus variable-length padding, which allows the application to produce arbitrary-length
encrypted records as well as padding-only cover traffic to conceal the difference between
periods of transmission and periods of silence. Because the padding is encrypted alongside the

[CLINIC] [HCJC16]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 126

actual content, an attacker cannot directly determine the length of the padding, but may be able
to measure it indirectly by the use of timing channels exposed during record processing (i.e.,
seeing how long it takes to process a record or trickling in records to see which ones elicit a
response from the server). In general, it is not known how to remove all of these channels
because even a constant-time padding removal function will likely feed the content into data-
dependent functions. At minimum, a fully constant-time server or client would require close
cooperation with the application-layer protocol implementation, including making that higher-
level protocol constant time.

Note: Robust traffic analysis defenses will likely lead to inferior performance due to delays in
transmitting packets and increased traffic volume.

F.4. Side Channel Attacks
In general, TLS does not have specific defenses against side-channel attacks (i.e., those which
attack the communications via secondary channels such as timing), leaving those to the
implementation of the relevant cryptographic primitives. However, certain features of TLS are
designed to make it easier to write side-channel resistant code:

Unlike previous versions of TLS which used a composite MAC-then-encrypt structure, TLS
1.3 only uses AEAD algorithms, allowing implementations to use self-contained constant-
time implementations of those primitives.
TLS uses a uniform "bad_record_mac" alert for all decryption errors, which is intended to
prevent an attacker from gaining piecewise insight into portions of the message. Additional
resistance is provided by terminating the connection on such errors; a new connection will
have different cryptographic material, preventing attacks against the cryptographic
primitives that require multiple trials.

Information leakage through side channels can occur at layers above TLS, in application
protocols and the applications that use them. Resistance to side-channel attacks depends on
applications and application protocols separately ensuring that confidential information is not
inadvertently leaked.

•

•

F.5. Replay Attacks on 0-RTT
Replayable 0-RTT data presents a number of security threats to TLS-using applications, unless
those applications are specifically engineered to be safe under replay (minimally, this means
idempotent, but in many cases may also require other stronger conditions, such as constant-time
response). Potential attacks include:

Duplication of actions which cause side effects (e.g., purchasing an item or transferring
money) to be duplicated, thus harming the site or the user.
Attackers can store and replay 0-RTT messages to reorder them with respect to other
messages (e.g., moving a delete to after a create).

•

•

RFC 9846 TLS January 2026

Rescorla Standards Track Page 127

Amplifying existing information leaks caused by side effects like caching. An attacker could
learn information about the content of a 0-RTT message by replaying it to some cache node
that has not cached some resource of interest, and then using a separate connection to check
whether that resource has been added to the cache. This could be repeated with different
cache nodes as often as the 0-RTT message is replayable.

If data can be replayed a large number of times, additional attacks become possible, such as
making repeated measurements of the speed of cryptographic operations. In addition, they may
be able to overload rate-limiting systems. For a further description of these attacks, see .

Ultimately, servers have the responsibility to protect themselves against attacks employing 0-RTT
data replication. The mechanisms described in Section 8 are intended to prevent replay at the
TLS layer but do not provide complete protection against receiving multiple copies of client data.
TLS 1.3 falls back to the 1-RTT handshake when the server does not have any information about
the client, e.g., because it is in a different cluster which does not share state or because the ticket
has been deleted as described in Section 8.1. If the application-layer protocol retransmits data in
this setting, then it is possible for an attacker to induce message duplication by sending the
ClientHello to both the original cluster (which processes the data immediately) and another
cluster which will fall back to 1-RTT and process the data upon application-layer replay. The
scale of this attack is limited by the client's willingness to retry transactions and therefore only
allows a limited amount of duplication, with each copy appearing as a new connection at the
server.

If implemented correctly, the mechanisms described in Section 8.1 and Section 8.2 prevent a
replayed ClientHello and its associated 0-RTT data from being accepted multiple times by any
cluster with consistent state; for servers which limit the use of 0-RTT to one cluster for a single
ticket, then a given ClientHello and its associated 0-RTT data will only be accepted once.
However, if state is not completely consistent, then an attacker might be able to have multiple
copies of the data be accepted during the replication window. Because clients do not know the
exact details of server behavior, they send messages in early data which are not safe
to have replayed and which they would not be willing to retry across multiple 1-RTT connections.

Application protocols use 0-RTT data without a profile that defines its use. That profile
needs to identify which messages or interactions are safe to use with 0-RTT and how to handle
the situation when the server rejects 0-RTT and falls back to 1-RTT.

In addition, to avoid accidental misuse, TLS implementations enable 0-RTT (either
sending or accepting) unless specifically requested by the application and
automatically resend 0-RTT data if it is rejected by the server unless instructed by the
application. Server-side applications may wish to implement special processing for 0-RTT data
for some kinds of application traffic (e.g., abort the connection, request that data be resent at the
application layer, or delay processing until the handshake completes). In order to allow
applications to implement this kind of processing, TLS implementations provide a way for
the application to determine if the handshake has completed.

•

[Mac17]

MUST NOT

MUST NOT

MUST NOT
MUST NOT

MUST

RFC 9846 TLS January 2026

Rescorla Standards Track Page 128

F.5.1. Replay and Exporters

Replays of the ClientHello produce the same early exporter, thus requiring additional care by
applications which use these exporters. In particular, if these exporters are used as an
authentication channel binding (e.g., by signing the output of the exporter) an attacker who
compromises the PSK can transplant authenticators between connections without
compromising the authentication key.

In addition, the early exporter be used to generate server-to-client encryption keys
because that would entail the reuse of those keys. This parallels the use of the early application
traffic keys only in the client-to-server direction.

SHOULD NOT

F.6. PSK Identity Exposure
Because implementations respond to an invalid PSK binder by aborting the handshake, it may
be possible for an attacker to verify whether a given PSK identity is valid. Specifically, if a server
accepts both external-PSK and certificate-based handshakes, a valid PSK identity will result in a
failed handshake, whereas an invalid identity will just be skipped and result in a successful
certificate handshake. Servers which solely support PSK handshakes may be able to resist this
form of attack by treating the cases where there is no valid PSK identity and where there is an
identity but it has an invalid binder identically.

F.7. Sharing PSKs Across Protocol Versions
TLS 1.3 takes a conservative approach to PSKs by binding them to a specific KDF. By contrast,
TLS 1.2 allows PSKs to be used with any hash function and the TLS 1.2 PRF. Thus, any PSK which
is used with both TLS 1.2 and TLS 1.3 must be used with only one hash in TLS 1.3, which is less
than optimal if users want to provision a single PSK. The constructions in TLS 1.2 and TLS 1.3 are
different, although they are both based on HMAC. While there is no known way in which the
same PSK might produce related output in both versions, only limited analysis has been done.
Implementations can ensure safety from cross-protocol related output by not reusing PSKs
between TLS 1.3 and TLS 1.2.

F.8. External PSKs and Rerouting
External PSKs in TLS are designed to be known to exactly one client and one server. However, as
noted in , there are use cases where PSKs are shared between more than two entities.
In such scenarios, in addition to the expected security weakness where a compromised group
member can impersonate any other member, a malicious non-member can reroute handshakes
between honest group members to connect them in unintended ways .
provides recommendations for external PSK usage, including the use of external PSK importers
as defined in , that prevent such malicious rerouting of messages.

[RFC9257]

[Selfie] [RFC9257]

[RFC9258]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 129

F.9. Misbinding When Using Self-Signed Certificates or Raw Public Keys
When TLS 1.3 is used with self-signed certificates without useful identities (as in DTLS-SRTP

) or raw public keys for peer authentication, it may be vulnerable to
misbinding attacks . This risk can be mitigated by using the "external_id_hash" extension

 or, if only the server is being authenticated, by the server verifying that the
"server_name" extension matches its expected identity.

[RFC5763] [RFC7250]
[MM24]

[RFC8844]

F.10. Attacks on Static RSA
Although TLS 1.3 does not use RSA key transport and so is not directly susceptible to
Bleichenbacher-type attacks if TLS 1.3 servers also support static RSA in the context of
previous versions of TLS, then it may be possible to impersonate the server for TLS 1.3
connections . TLS 1.3 implementations can prevent this attack by disabling support for
static RSA across all versions of TLS. In principle, implementations might also be able to separate
certificates with different keyUsage bits for static RSA decryption and RSA signature, but this
technique relies on clients refusing to accept signatures using keys in certificates that do not
have the digitalSignature bit set, and many clients do not enforce this restriction.

[Blei98]

[JSS15]

RFC 9846 TLS January 2026

Rescorla Standards Track Page 130

Contributors

RFC 9846 TLS January 2026

Rescorla Standards Track Page 131

 Martin Abadi
 University of California, Santa Cruz
 abadi@cs.ucsc.edu

 Christopher Allen
 (co-editor of TLS 1.0)
 Alacrity Ventures
 ChristopherA@AlacrityManagement.com

 Nimrod Aviram
 Tel Aviv University
 nimrod.aviram@gmail.com

 Richard Barnes
 Cisco
 rlb@ipv.sx

 Steven M. Bellovin
 Columbia University
 smb@cs.columbia.edu

 David Benjamin
 Google
 davidben@google.com

 Benjamin Beurdouche
 INRIA & Microsoft Research
 benjamin.beurdouche@ens.fr

 Karthikeyan Bhargavan
 (editor of {{RFC7627}})
 INRIA
 karthikeyan.bhargavan@inria.fr

 Simon Blake-Wilson
 (co-author of {{RFC4492}})
 BCI
 sblakewilson@bcisse.com

 Nelson Bolyard
 (co-author of {{RFC4492}})
 Sun Microsystems, Inc.
 nelson@bolyard.com

 Ran Canetti
 IBM
 canetti@watson.ibm.com

 Matt Caswell
 OpenSSL
 matt@openssl.org

 Stephen Checkoway
 University of Illinois at Chicago
 sfc@uic.edu

 Pete Chown

RFC 9846 TLS January 2026

Rescorla Standards Track Page 132

 Skygate Technology Ltd
 pc@skygate.co.uk

 Katriel Cohn-Gordon
 University of Oxford
 me@katriel.co.uk

 Cas Cremers
 University of Oxford
 cas.cremers@cs.ox.ac.uk

 Antoine Delignat-Lavaud
 (co-author of {{RFC7627}})
 INRIA
 antdl@microsoft.com

 Tim Dierks
 (co-author of TLS 1.0, co-editor of TLS 1.1 and 1.2)
 Independent
 tim@dierks.org

 Roelof DuToit
 Symantec Corporation
 roelof_dutoit@symantec.com

 Taher Elgamal
 Securify
 taher@securify.com

 Pasi Eronen
 Nokia
 pasi.eronen@nokia.com

 Cedric Fournet
 Microsoft
 fournet@microsoft.com

 Anil Gangolli
 anil@busybuddha.org

 David M. Garrett
 dave@nulldereference.com

 Illya Gerasymchuk
 Independent
 illya@iluxonchik.me

 Alessandro Ghedini
 Cloudflare Inc.
 alessandro@cloudflare.com

 Daniel Kahn Gillmor
 ACLU
 dkg@fifthhorseman.net

 Matthew Green
 Johns Hopkins University
 mgreen@cs.jhu.edu

RFC 9846 TLS January 2026

Rescorla Standards Track Page 133

 Jens Guballa
 ETAS
 jens.guballa@etas.com

 Felix Guenther
 TU Darmstadt
 mail@felixguenther.info

 Vipul Gupta
 (co-author of {{RFC4492}})
 Sun Microsystems Laboratories
 vipul.gupta@sun.com

 Chris Hawk
 (co-author of {{RFC4492}})
 Corriente Networks LLC
 chris@corriente.net

 Kipp Hickman

 Alfred Hoenes

 David Hopwood
 Independent Consultant
 david.hopwood@blueyonder.co.uk

 Marko Horvat
 MPI-SWS
 mhorvat@mpi-sws.org

 Jonathan Hoyland
 Royal Holloway, University of London
 jonathan.hoyland@gmail.com

 Subodh Iyengar
 Facebook
 subodh@fb.com

 Benjamin Kaduk
 Akamai Technologies
 kaduk@mit.edu

 Hubert Kario
 Red Hat Inc.
 hkario@redhat.com

 Phil Karlton
 (co-author of SSL 3.0)

 Leon Klingele
 Independent
 mail@leonklingele.de

 Paul Kocher
 (co-author of SSL 3.0)
 Cryptography Research
 paul@cryptography.com

RFC 9846 TLS January 2026

Rescorla Standards Track Page 134

 Hugo Krawczyk
 IBM
 hugokraw@us.ibm.com

 Adam Langley
 (co-author of {{RFC7627}})
 Google
 agl@google.com

 Olivier Levillain
 ANSSI
 olivier.levillain@ssi.gouv.fr

 Xiaoyin Liu
 University of North Carolina at Chapel Hill
 xiaoyin.l@outlook.com

 Ilari Liusvaara
 Independent
 ilariliusvaara@welho.com

 Atul Luykx
 K.U. Leuven
 atul.luykx@kuleuven.be

 Colm MacCarthaigh
 Amazon Web Services
 colm@allcosts.net

 Carl Mehner
 USAA
 carl.mehner@usaa.com

 Jan Mikkelsen
 Transactionware
 janm@transactionware.com

 Bodo Moeller
 (co-author of {{RFC4492}})
 Google
 bodo@acm.org

 Kyle Nekritz
 Facebook
 knekritz@fb.com

 Erik Nygren
 Akamai Technologies
 erik+ietf@nygren.org

 Magnus Nystrom
 Microsoft
 mnystrom@microsoft.com

 Kazuho Oku
 DeNA Co., Ltd.
 kazuhooku@gmail.com

RFC 9846 TLS January 2026

Rescorla Standards Track Page 135

 Kenny Paterson
 Royal Holloway, University of London
 kenny.paterson@rhul.ac.uk

 Christopher Patton
 University of Florida
 cjpatton@ufl.edu

 Alfredo Pironti
 (co-author of {{RFC7627}})
 INRIA
 alfredo.pironti@inria.fr

 Andrei Popov
 Microsoft
 andrei.popov@microsoft.com

 John Preuß Mattsson
 Ericsson
 john.mattsson@ericsson.com

 Marsh Ray
 (co-author of {{RFC7627}})
 Microsoft
 maray@microsoft.com

 Robert Relyea
 Netscape Communications
 relyea@netscape.com

 Kyle Rose
 Akamai Technologies
 krose@krose.org

 Jim Roskind
 Amazon
 jroskind@amazon.com

 Michael Sabin

 Joe Salowey
 Tableau Software
 joe@salowey.net

 Rich Salz
 Akamai
 rsalz@akamai.com

 David Schinazi
 Apple Inc.
 dschinazi@apple.com

 Sam Scott
 Royal Holloway, University of London
 me@samjs.co.uk

 Mohit Sethi

RFC 9846 TLS January 2026

Rescorla Standards Track Page 136

 Aalto University
 mohit@iki.fi

 Thomas Shrimpton
 University of Florida
 teshrim@ufl.edu

 Dan Simon
 Microsoft, Inc.
 dansimon@microsoft.com

 Brian Smith
 Independent
 brian@briansmith.org

 Ben Smyth
 Ampersand
 www.bensmyth.com

 Brian Sniffen
 Akamai Technologies
 ietf@bts.evenmere.org

 Nick Sullivan
 Cloudflare Inc.
 nick@cloudflare.com

 Bjoern Tackmann
 University of California, San Diego
 btackmann@eng.ucsd.edu

 Tim Taubert
 Mozilla
 ttaubert@mozilla.com

 Martin Thomson
 Mozilla
 mt@mozilla.com

 Hannes Tschofenig
 Arm Limited
 Hannes.Tschofenig@arm.com

 Sean Turner
 sn3rd
 sean@sn3rd.com

 Steven Valdez
 Google
 svaldez@google.com

 Filippo Valsorda
 Cloudflare Inc.
 filippo@cloudflare.com

 Thyla van der Merwe
 Royal Holloway, University of London
 tjvdmerwe@gmail.com

RFC 9846 TLS January 2026

Rescorla Standards Track Page 137

 Victor Vasiliev
 Google
 vasilvv@google.com

 Loganaden Velvindron
 cyberstorm.mu
 logan@cyberstorm.mu

 Hoeteck Wee
 Ecole Normale Superieure, Paris
 hoeteck@alum.mit.edu

 Tom Weinstein

 David Wong
 NCC Group
 david.wong@nccgroup.trust

 Christopher A. Wood
 Apple Inc.
 cawood@apple.com

 Tim Wright
 Vodafone
 timothy.wright@vodafone.com

 Peter Wu
 Independent
 peter@lekensteyn.nl

 Kazu Yamamoto
 Internet Initiative Japan Inc.
 kazu@iij.ad.jp

Author's Address
Eric Rescorla
Independent

ekr@rtfm.comEmail:

RFC 9846 TLS January 2026

Rescorla Standards Track Page 138

mailto:ekr@rtfm.com

	RFC 9846
	The Transport Layer Security (TLS) Protocol Version 1.3
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Conventions and Terminology
	1.2. Relationship to RFC 8446
	1.3. Major Differences from TLS 1.2
	1.4. Updates Affecting TLS 1.2

	2. Protocol Overview
	2.1. Incorrect DHE Share
	2.2. Resumption and Pre-Shared Key (PSK)
	2.3. 0-RTT Data

	3. Presentation Language
	3.1. Basic Block Size
	3.2. Miscellaneous
	3.3. Numbers
	3.4. Vectors
	3.5. Enumerateds
	3.6. Constructed Types
	3.7. Constants
	3.8. Variants

	4. Handshake Protocol
	4.1. Key Exchange Messages
	4.1.1. Cryptographic Negotiation
	4.1.2. Client Hello
	4.1.3. Server Hello
	4.1.4. Hello Retry Request

	4.2. Extensions
	4.2.1. Supported Versions
	4.2.2. Cookie
	4.2.3. Signature Algorithms
	4.2.4. Certificate Authorities
	4.2.5. OID Filters
	4.2.6. Post-Handshake Certificate-Based Client Authentication
	4.2.7. Supported Groups
	4.2.8. Key Share
	4.2.8.1. Diffie-Hellman Parameters
	4.2.8.2. ECDHE Parameters

	4.2.9. Pre-Shared Key Exchange Modes
	4.2.10. Early Data Indication
	4.2.11. Pre-Shared Key Extension
	4.2.11.1. Ticket Age
	4.2.11.2. PSK Binder
	4.2.11.3. Processing Order

	4.3. Server Parameters
	4.3.1. Encrypted Extensions
	4.3.2. Certificate Request

	4.4. Authentication Messages
	4.4.1. The Transcript Hash
	4.4.2. Certificate
	4.4.2.1. OCSP Status and SCT Extensions
	4.4.2.2. Certificate Selection
	4.4.2.3. Receiving a Certificate Message

	4.4.3. Certificate Verify
	4.4.4. Finished

	4.5. End of Early Data
	4.6. Post-Handshake Messages
	4.6.1. New Session Ticket Message
	4.6.2. Post-Handshake Authentication
	4.6.3. Key and Initialization Vector Update

	5. Record Protocol
	5.1. Record Layer
	5.2. Record Payload Protection
	5.3. Per-Record Nonce
	5.4. Record Padding
	5.5. Limits on Key Usage

	6. Alert Protocol
	6.1. Closure Alerts
	6.2. Error Alerts

	7. Cryptographic Computations
	7.1. Key Schedule
	7.2. Updating Traffic Secrets
	7.3. Traffic Key Calculation
	7.4. (EC)DHE Shared Secret Calculation
	7.4.1. Finite Field Diffie-Hellman
	7.4.2. Elliptic Curve Diffie-Hellman

	7.5. Exporters

	8. 0-RTT and Anti-Replay
	8.1. Single-Use Tickets
	8.2. Client Hello Recording
	8.3. Freshness Checks

	9. Compliance Requirements
	9.1. Mandatory-to-Implement Cipher Suites
	9.2. Mandatory-to-Implement Extensions
	9.3. Protocol Invariants

	10. Security Considerations
	11. IANA Considerations
	11.1. Changes for this RFC

	12. References
	12.1. Normative References
	12.2. Informative References

	Appendix A. State Machine
	A.1. Client
	A.2. Server

	Appendix B. Protocol Data Structures and Constant Values
	B.1. Record Layer
	B.2. Alert Messages
	B.3. Handshake Protocol
	B.3.1. Key Exchange Messages
	B.3.1.1. Version Extension
	B.3.1.2. Cookie Extension
	B.3.1.3. Signature Algorithm Extension
	B.3.1.4. Supported Groups Extension

	B.3.2. Server Parameters Messages
	B.3.3. Authentication Messages
	B.3.4. Ticket Establishment
	B.3.5. Updating Keys

	B.4. Cipher Suites

	Appendix C. Implementation Notes
	C.1. Random Number Generation and Seeding
	C.2. Certificates and Authentication
	C.3. Implementation Pitfalls
	C.4. Client and Server Tracking Prevention
	C.5. Unauthenticated Operation

	Appendix D. Updates to TLS 1.2
	Appendix E. Backward Compatibility
	E.1. Negotiating with an Older Server
	E.2. Negotiating with an Older Client
	E.3. 0-RTT Backward Compatibility
	E.4. Middlebox Compatibility Mode
	E.5. Security Restrictions Related to Backward Compatibility

	Appendix F. Overview of Security Properties
	F.1. Handshake
	F.1.1. Key Derivation and HKDF
	F.1.2. Certificate-Based Client Authentication
	F.1.3. 0-RTT
	F.1.4. Exporter Independence
	F.1.5. Post-Compromise Security
	F.1.6. External References

	F.2. Record Layer
	F.2.1. External References

	F.3. Traffic Analysis
	F.4. Side Channel Attacks
	F.5. Replay Attacks on 0-RTT
	F.5.1. Replay and Exporters

	F.6. PSK Identity Exposure
	F.7. Sharing PSKs Across Protocol Versions
	F.8. External PSKs and Rerouting
	F.9. Misbinding When Using Self-Signed Certificates or Raw Public Keys
	F.10. Attacks on Static RSA

	Contributors
	Author's Address

