
RFC 9642
A YANG Data Model for a Keystore and Keystore
Operations

Abstract
This document presents a YANG module called "ietf-keystore" that enables centralized
configuration of both symmetric and asymmetric keys. The secret value for both key types may
be encrypted or hidden. Asymmetric keys may be associated with certificates. Notifications are
sent when certificates are about to expire.

Stream:
RFC:
Category:
Published:
ISSN:
Author:

Internet Engineering Task Force (IETF)
9642
Standards Track
August 2024
2070-1721
K. Watsen
Watsen Networks

Status of This Memo
This is an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the
consensus of the IETF community. It has received public review and has been approved for
publication by the Internet Engineering Steering Group (IESG). Further information on Internet
Standards is available in Section 2 of RFC 7841.

Information about the current status of this document, any errata, and how to provide feedback
on it may be obtained at .https://www.rfc-editor.org/info/rfc9642

Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights
reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF
Documents () in effect on the date of publication of this
document. Please review these documents carefully, as they describe your rights and restrictions
with respect to this document. Code Components extracted from this document must include
Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.

https://trustee.ietf.org/license-info

Watsen Standards Track Page 1

https://www.rfc-editor.org/rfc/rfc9642
https://www.rfc-editor.org/info/rfc9642
https://trustee.ietf.org/license-info

Table of Contents
1. Introduction

1.1. Relation to Other RFCs

1.2. Specification Language

1.3. Terminology

1.4. Adherence to the NMDA

1.5. Conventions

2. The "ietf-keystore" Module

2.1. Data Model Overview

2.2. Example Usage

2.3. YANG Module

3. Support for Built-In Keys

4. Encrypting Keys in Configuration

5. Security Considerations

5.1. Security of Data at Rest and in Motion

5.2. Unconstrained Private Key Usage

5.3. Security Considerations for the "ietf-keystore" YANG Module

6. IANA Considerations

6.1. The IETF XML Registry

6.2. The YANG Module Names Registry

7. References

7.1. Normative References

7.2. Informative References

Acknowledgements

Author's Address

3

3

4

5

5

5

5

5

12

22

29

31

34

34

35

35

36

36

36

37

37

37

38

39

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 2

1. Introduction
This document presents a YANG 1.1 module called "ietf-keystore" that enables
centralized configuration of both symmetric and asymmetric keys. The secret value for both key
types may be encrypted or hidden (see). Asymmetric keys may be associated with
certificates. Notifications are sent when certificates are about to expire.

The "ietf-keystore" module defines many "grouping" statements intended for use by other
modules that may import it. For instance, there are groupings that define enabling a key to be
configured either inline (within the defining data model) or as a reference to a key in the central
keystore.

Special consideration has been given for servers that have cryptographic hardware, such as a
trusted platform module (TPM). These servers are unique in that the cryptographic hardware
hides the secret key values. Additionally, such hardware is commonly initialized when
manufactured to protect a "built-in" asymmetric key for which its public half is conveyed in an
identity certificate (e.g., an Initial Device Identifier (IDevID) certificate). See
how built-in keys are supported in Section 3.

This document is intended to reflect existing practices that many server implementations
support at the time of writing. To simplify implementation, advanced key formats may be
selectively implemented.

Implementations may utilize operating-system level keystore utilities (e.g., "Keychain Access" on
MacOS) and/or cryptographic hardware (e.g., TPMs).

[RFC7950]

[RFC9640]

[Std-802.1AR-2018]

1.1. Relation to Other RFCs
This document presents a YANG module that is part of a collection of RFCs that work
together to ultimately support the configuration of both the clients and servers of the Network
Configuration Protocol (NETCONF) and RESTCONF .

The dependency relationship between the primary YANG groupings defined in the various RFCs
is presented in the diagram below. In some cases, a document may define secondary groupings
that introduce dependencies not illustrated in the diagram. The labels in the diagram are
shorthand names for the defining RFCs. The citation references for the shorthand names are
provided below the diagram.

Please note that the arrows in the diagram point from referencer to referenced. For example, the
"crypto-types" RFC does not have any dependencies, whilst the "keystore" RFC depends on the
"crypto-types" RFC.

[RFC7950]

[RFC6241] [RFC8040]

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 3

1.2. Specification Language
The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to
be interpreted as described in BCP 14 when, and only when, they appear in
all capitals, as shown here.

Label in Diagram Originating RFC

crypto-types

truststore

keystore RFC 9642

tcp-client-server

ssh-client-server

tls-client-server

http-client-server

netconf-client-server

restconf-client-server

Table 1: Labels in Diagram to RFC Mapping

 crypto-types
 ^ ^
 / \
 / \
 truststore keystore
 ^ ^ ^ ^
 | +---------+ | |
 | | | |
 | +------------+ |
tcp-client-server | / | |
 ^ ^ ssh-client-server | |
 | | ^ tls-client-server
 | | | ^ ^ http-client-server
 | | | | | ^
		+-----+ +---------+		
+-----------	--------	--------------+		
 +-----------+ | | | | |
 | | | | | |
 | | | | | |
 netconf-client-server restconf-client-server

[RFC9640]

[RFC9641]

[RFC9643]

[RFC9644]

[RFC9645]

[HTTP-CLIENT-SERVER]

[NETCONF-CLIENT-SERVER]

[RESTCONF-CLIENT-SERVER]

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD
NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 4

1.3. Terminology
The terms "client" and "server" are defined in and are not redefined here.

The term "keystore" is defined in this document as a mechanism that intends to safeguard
secrets.

The nomenclatures "<running>" and "<operational>" are defined in .

The sentence fragments "augmented" and "augmented in" are used herein as the past tense
verbified form of the "augment" statement defined in .

The term "key" may be used to mean one of three things in this document: 1) the YANG-defined
"asymmetric-key" or "symmetric-key" node defined in this document, 2) the raw key data
possessed by the aforementioned key nodes, or 3) the "key" of a YANG "list" statement. This
document attempts to always qualify types '2' and '3' using "raw key value" and "YANG list key"
where needed. In all other cases, an unqualified "key" refers to a YANG-defined "asymmetric-key"
or "symmetric-key" node.

1.4. Adherence to the NMDA
This document is compliant with Network Management Datastore Architecture (NMDA)

. For instance, keys and associated certificates installed during manufacturing (e.g., for
an IDevID certificate) are expected to appear in <operational> (see Section 3).

1.5. Conventions
Various examples in this document use "BASE64VALUE=" as a placeholder value for binary data
that has been base64-encoded (per). This placeholder value is used
because real base64-encoded structures are often many lines long and hence distracting to the
example being presented.

This document uses the adjective "central" to the word "keystore" to refer to the top-level
instance of the "keystore-grouping", when the "central-keystore-supported" feature is enabled.
Please be aware that consuming YANG modules instantiate the "keystore-grouping" in other
locations. All such other instances are not the "central" instance.

2. The "ietf-keystore" Module
This section defines a YANG 1.1 module called "ietf-keystore". A high-level overview of
the module is provided in Section 2.1. Examples illustrating the module's use are provided in
Section 2.2. The YANG module itself is defined in Section 2.3.

[RFC6241]

[RFC8342]

Section 7.17 of [RFC7950]

[RFC8342]

Section 9.8 of [RFC7950]

MAY

[RFC7950]

2.1. Data Model Overview
This section provides an overview of the "ietf-keystore" module in terms of its features, typedefs,
groupings, and protocol-accessible nodes.

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 5

https://www.rfc-editor.org/rfc/rfc7950#section-7.17
https://www.rfc-editor.org/rfc/rfc7950#section-9.8

2.1.3. Groupings

The "ietf-keystore" module defines the following "grouping" statements:

encrypted-by-grouping
central-asymmetric-key-certificate-ref-grouping
inline-or-keystore-symmetric-key-grouping
inline-or-keystore-asymmetric-key-grouping
inline-or-keystore-asymmetric-key-with-certs-grouping
inline-or-keystore-end-entity-cert-with-key-grouping
keystore-grouping

Each of these groupings are presented in the following subsections.

2.1.1. Features

The following diagram lists all the "feature" statements defined in the "ietf-keystore" module:

The diagram above uses syntax that is similar to but not defined in .

Features:
 +-- central-keystore-supported
 +-- inline-definitions-supported
 +-- asymmetric-keys
 +-- symmetric-keys

[RFC8340]

2.1.2. Typedefs

The following diagram lists the "typedef" statements defined in the "ietf-keystore" module:

The diagram above uses syntax that is similar to but not defined in .

Comments:

All the typedefs defined in the "ietf-keystore" module extend the base "leafref" type defined
in .
The leafrefs refer to symmetric and asymmetric keys in the central keystore when this
module is implemented.
These typedefs are provided as an aid to consuming modules that import the "ietf-keystore"
module.

Typedefs:
 leafref
 +-- central-symmetric-key-ref
 +-- central-asymmetric-key-ref

[RFC8340]

•
[RFC7950]

•

•

•
•
•
•
•
•
•

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 6

2.1.3.1. The "encrypted-by-grouping" Grouping
The following tree diagram illustrates the "encrypted-by-grouping" grouping:

Comments:

This grouping defines a "choice" statement with options to reference either a symmetric or
an asymmetric key configured in the keystore.
This grouping is usable only when the keystore module is implemented. Servers defining
custom keystore locations augment in alternate "encrypted-by" references to the
alternate locations.

[RFC8340]

 grouping encrypted-by-grouping:
 +-- (encrypted-by)
 +--:(central-symmetric-key-ref)
 | {central-keystore-supported,symmetric-keys}?
 | +-- symmetric-key-ref? ks:central-symmetric-key-ref
 +--:(central-asymmetric-key-ref)
 {central-keystore-supported,asymmetric-keys}?
 +-- asymmetric-key-ref? ks:central-asymmetric-key-ref

•

•
MUST

2.1.3.2. The "central-asymmetric-key-certificate-ref-grouping" Grouping
The following tree diagram illustrates the "central-asymmetric-key-certificate-ref-
grouping" grouping:

Comments:

This grouping defines a reference to a certificate in two parts: the first being the name of the
asymmetric key the certificate is associated with, and the second being the name of the
certificate itself.
This grouping is usable only when the keystore module is implemented. Servers defining
custom keystore locations can define an alternate grouping for references to the alternate
locations.

[RFC8340]

 grouping central-asymmetric-key-certificate-ref-grouping:
 +-- asymmetric-key? ks:central-asymmetric-key-ref
 | {central-keystore-supported,asymmetric-keys}?
 +-- certificate? leafref

•

•

2.1.3.3. The "inline-or-keystore-symmetric-key-grouping" Grouping
The following tree diagram illustrates the "inline-or-keystore-symmetric-key-
grouping" grouping:

[RFC8340]

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 7

Comments:

The "inline-or-keystore-symmetric-key-grouping" grouping is provided solely as convenience
to consuming modules that wish to offer an option for whether a symmetric key is defined
inline or as a reference to a symmetric key in the keystore.
A "choice" statement is used to expose the various options. Each option is enabled by a
"feature" statement. Additional "case" statements be augmented in if, e.g., there is a
need to reference a symmetric key in an alternate location.
For the "inline-definition" option, the definition uses the "symmetric-key-grouping" grouping
discussed in .
For the "central-keystore" option, the "central-keystore-reference" is an instance of the
"symmetric-key-ref" discussed in Section 2.1.2.

 grouping inline-or-keystore-symmetric-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:symmetric-key-grouping
 +--:(central-keystore)
 {central-keystore-supported,symmetric-keys}?
 +-- central-keystore-reference?
 ks:central-symmetric-key-ref

•

•
MAY

•
Section 2.1.4.3 of [RFC9640]

•

2.1.3.4. The "inline-or-keystore-asymmetric-key-grouping" Grouping
The following tree diagram illustrates the "inline-or-keystore-asymmetric-key-
grouping" grouping:

Comments:

The "inline-or-keystore-asymmetric-key-grouping" grouping is provided solely as
convenience to consuming modules that wish to offer an option for whether an asymmetric
key is defined inline or as a reference to an asymmetric key in the keystore.
A "choice" statement is used to expose the various options. Each option is enabled by a
"feature" statement. Additional "case" statements be augmented in if, e.g., there is a
need to reference an asymmetric key in an alternate location.

[RFC8340]

 grouping inline-or-keystore-asymmetric-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference?
 ks:central-asymmetric-key-ref

•

•
MAY

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 8

https://www.rfc-editor.org/rfc/rfc9640#section-2.1.4.3

For the "inline-definition" option, the definition uses the "asymmetric-key-pair-grouping"
grouping discussed in .
For the "central-keystore" option, the "central-keystore-reference" is an instance of the
"asymmetric-key-ref" typedef discussed in Section 2.1.2.

•
Section 2.1.4.6 of [RFC9640]

•

2.1.3.5. The "inline-or-keystore-asymmetric-key-with-certs-grouping" Grouping
The following tree diagram illustrates the "inline-or-keystore-asymmetric-key-with-
certs-grouping" grouping:

Comments:

The "inline-or-keystore-asymmetric-key-with-certs-grouping" grouping is provided solely as
convenience to consuming modules that wish to offer an option for whether an asymmetric
key is defined inline or as a reference to an asymmetric key in the keystore.
A "choice" statement is used to expose the various options. Each option is enabled by a
"feature" statement. Additional "case" statements be augmented in if, e.g., there is a
need to reference an asymmetric key in an alternate location.
For the "inline-definition" option, the definition uses the "asymmetric-key-pair-with-certs-
grouping" grouping discussed in .
For the "central-keystore" option, the "central-keystore-reference" is an instance of the
"asymmetric-key-ref" typedef discussed in Section 2.1.2.

[RFC8340]

 grouping inline-or-keystore-asymmetric-key-with-certs-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-with-certs-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference?
 ks:central-asymmetric-key-ref

•

•
MAY

•
Section 2.1.4.12 of [RFC9640]

•

2.1.3.6. The "inline-or-keystore-end-entity-cert-with-key-grouping" Grouping
The following tree diagram illustrates the "inline-or-keystore-end-entity-cert-with-key-
grouping" grouping:

[RFC8340]

 grouping inline-or-keystore-end-entity-cert-with-key-grouping:
 +-- (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +-- inline-definition
 | +---u ct:asymmetric-key-pair-with-cert-grouping
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +-- central-keystore-reference
 +---u central-asymmetric-key-certificate-ref-grouping

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 9

https://www.rfc-editor.org/rfc/rfc9640#section-2.1.4.6
https://www.rfc-editor.org/rfc/rfc9640#section-2.1.4.12

Comments:

The "inline-or-keystore-end-entity-cert-with-key-grouping" grouping is provided solely as
convenience to consuming modules that wish to offer an option for whether a symmetric key
is defined inline or as a reference to a symmetric key in the keystore.
A "choice" statement is used to expose the various options. Each option is enabled by a
"feature" statement. Additional "case" statements be augmented in if, e.g., there is a
need to reference a symmetric key in an alternate location.
For the "inline-definition" option, the definition uses the "asymmetric-key-pair-with-certs-
grouping" grouping discussed in .
For the "central-keystore" option, the "central-keystore-reference" uses the "central-
asymmetric-key-certificate-ref-grouping" grouping discussed in Section 2.1.3.2.

•

•
MAY

•
Section 2.1.4.12 of [RFC9640]

•

2.1.3.7. The "keystore-grouping" Grouping
The following tree diagram illustrates the "keystore-grouping" grouping:

Comments:

The "keystore-grouping" grouping defines a keystore instance as being composed of
symmetric and asymmetric keys. The structure for the symmetric and asymmetric keys is
essentially the same: a "list" inside a "container".
For asymmetric keys, each "asymmetric-key" uses the "asymmetric-key-pair-with-certs-
grouping" grouping discussed in .
For symmetric keys, each "symmetric-key" uses the "symmetric-key-grouping" grouping
discussed in .

[RFC8340]

 grouping keystore-grouping:
 +-- asymmetric-keys {asymmetric-keys}?
 | +-- asymmetric-key* [name]
 | +-- name? string
 | +---u ct:asymmetric-key-pair-with-certs-grouping
 +-- symmetric-keys {symmetric-keys}?
 +-- symmetric-key* [name]
 +-- name? string
 +---u ct:symmetric-key-grouping

•

•
Section 2.1.4.12 of [RFC9640]

•
Section 2.1.4.3 of [RFC9640]

2.1.4. Protocol-Accessible Nodes

The following tree diagram lists all the protocol-accessible nodes defined in the "ietf-
keystore" module without expanding the "grouping" statements:

[RFC8340]

module: ietf-keystore
 +--rw keystore {central-keystore-supported}?
 +---u keystore-grouping

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 10

https://www.rfc-editor.org/rfc/rfc9640#section-2.1.4.12
https://www.rfc-editor.org/rfc/rfc9640#section-2.1.4.12
https://www.rfc-editor.org/rfc/rfc9640#section-2.1.4.3

The following tree diagram lists all the protocol-accessible nodes defined in the "ietf-
keystore" module, with all "grouping" statements expanded, enabling the keystore's full structure
to be seen:

[RFC8340]

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ietf-keystore
 +--rw keystore {central-keystore-supported}?
 +--rw asymmetric-keys {asymmetric-keys}?
 | +--rw asymmetric-key* [name]
 | +--rw name string
 | +--rw public-key-format? identityref
 | +--rw public-key? binary
 | +--rw private-key-format? identityref
 | +--rw (private-key-type)
 | | +--:(cleartext-private-key) {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key) {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | | +--rw (encrypted-by)
 | | | +--:(central-symmetric-key-ref)
 | | | | {central-keystore-supported,symme\
tric-keys}?
 | | | | +--rw symmetric-key-ref?
 | | | | ks:central-symmetric-key-ref
 | | | +--:(central-asymmetric-key-ref)
 | | | {central-keystore-supported,asymm\
etric-keys}?
 | | | +--rw asymmetric-key-ref?
 | | | ks:central-asymmetric-key-ref
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--rw certificates
 | | +--rw certificate* [name]
 | | +--rw name string
 | | +--rw cert-data end-entity-cert-cms
 | | +---n certificate-expiration
 | | {certificate-expiration-notification}?
 | | +-- expiration-date yang:date-and-time
 | +---x generate-csr {csr-generation}?
 | +---w input
 | | +---w csr-format identityref
 | | +---w csr-info csr-info
 | +--ro output
 | +--ro (csr-type)
 | +--:(p10-csr)
 | +--ro p10-csr? p10-csr
 +--rw symmetric-keys {symmetric-keys}?
 +--rw symmetric-key* [name]
 +--rw name string
 +--rw key-format? identityref
 +--rw (key-type)
 +--:(cleartext-symmetric-key)
 | +--rw cleartext-symmetric-key? binary

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 11

Comments:

Protocol-accessible nodes are those nodes that are accessible when the module is
"implemented", as described in .
The protocol-accessible nodes for the "ietf-keystore" module are instances of the "keystore-
grouping" grouping discussed in Section 2.1.3.7.
The top-level node "keystore" is additionally constrained by the feature "central-keystore-
supported".
The "keystore-grouping" grouping is discussed in Section 2.1.3.7.
The reason for why "keystore-grouping" exists separate from the protocol-accessible nodes
definition is to enable instances of the keystore to be instantiated in other locations, as may
be needed or desired by some modules.

 | {cleartext-symmetric-keys}?
 +--:(hidden-symmetric-key) {hidden-symmetric-keys}?
 | +--rw hidden-symmetric-key? empty
 +--:(encrypted-symmetric-key)
 {encrypted-symmetric-keys}?
 +--rw encrypted-symmetric-key
 +--rw encrypted-by
 | +--rw (encrypted-by)
 | +--:(central-symmetric-key-ref)
 | | {central-keystore-supported,symme\
tric-keys}?
 | | +--rw symmetric-key-ref?
 | | ks:central-symmetric-key-ref
 | +--:(central-asymmetric-key-ref)
 | {central-keystore-supported,asymm\
etric-keys}?
 | +--rw asymmetric-key-ref?
 | ks:central-asymmetric-key-ref
 +--rw encrypted-value-format identityref
 +--rw encrypted-value binary

•
Section 5.6.5 of [RFC7950]

•

•

•
•

2.2. Example Usage
The examples in this section are encoded using XML, such as might be the case when using the
NETCONF protocol. Other encodings be used, such as JSON when using the RESTCONF
protocol.

MAY

2.2.1. A Keystore Instance

The following example illustrates keys in <running>. Please see Section 3 for an example
illustrating built-in values in <operational>.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore
 xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 12

https://www.rfc-editor.org/rfc/rfc7950#section-5.6.5

 <symmetric-keys>
 <symmetric-key>
 <name>cleartext-symmetric-key</name>
 <key-format>ct:octet-string-key-format</key-format>
 <cleartext-symmetric-key>BASE64VALUE=</cleartext-symmetric-\
key>
 </symmetric-key>
 <symmetric-key>
 <name>hidden-symmetric-key</name>
 <hidden-symmetric-key/>
 </symmetric-key>
 <symmetric-key>
 <name>encrypted-symmetric-key</name>
 <key-format>ct:one-symmetric-key-format</key-format>
 <encrypted-symmetric-key>
 <encrypted-by>
 <asymmetric-key-ref>hidden-asymmetric-key</asymmetric-k\
ey-ref>
 </encrypted-by>
 <encrypted-value-format>ct:cms-enveloped-data-format</enc\
rypted-value-format>
 <encrypted-value>BASE64VALUE=</encrypted-value>
 </encrypted-symmetric-key>
 </symmetric-key>
 </symmetric-keys>

 <asymmetric-keys>
 <asymmetric-key>
 <name>ssh-rsa-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </asymmetric-key>
 <asymmetric-key>
 <name>ssh-rsa-key-with-cert</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>ex-rsa-cert2</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>raw-private-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </asymmetric-key>
 <asymmetric-key>
 <name>rsa-asymmetric-key</name>
 <private-key-format>ct:rsa-private-key-format</private-key-\
format>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 13

2.2.2. A Certificate Expiration Notification

The following example illustrates a "certificate-expiration" notification for a certificate associated
with an asymmetric key configured in the keystore.

 <name>ex-rsa-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>ec-asymmetric-key</name>
 <private-key-format>ct:ec-private-key-format</private-key-f\
ormat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>ex-ec-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>hidden-asymmetric-key</name>
 <public-key-format>ct:subject-public-key-info-format</publi\
c-key-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>builtin-idevid-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>my-ldevid-cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 <asymmetric-key>
 <name>encrypted-asymmetric-key</name>
 <private-key-format>ct:one-asymmetric-key-format</private-k\
ey-format>
 <encrypted-private-key>
 <encrypted-by>
 <symmetric-key-ref>encrypted-symmetric-key</symmetric-k\
ey-ref>
 </encrypted-by>
 <encrypted-value-format>ct:cms-encrypted-data-format</enc\
rypted-value-format>
 <encrypted-value>BASE64VALUE=</encrypted-value>
 </encrypted-private-key>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 14

2.2.3. The "Local or Keystore" Groupings

This section illustrates the various "inline-or-keystore" groupings defined in the "ietf-keystore"
module, specifically the "inline-or-keystore-symmetric-key-grouping" (Section 2.1.3.3), "inline-or-
keystore-asymmetric-key-grouping" (Section 2.1.3.4), "inline-or-keystore-asymmetric-key-with-
certs-grouping" (Section 2.1.3.5), and "inline-or-keystore-end-entity-cert-with-key-grouping"
(Section 2.1.3.6) groupings.

These examples assume the existence of an example module called "ex-keystore-usage" that has
the namespace "https://example.com/ns/example-keystore-usage".

The ex-keystore-usage module is first presented using tree diagrams , followed by an
instance example illustrating all the "inline-or-keystore" groupings in use, followed by the YANG
module itself.

2.2.3.1. Tree Diagrams for the "ex-keystore-usage" Module
The following tree diagram illustrates "ex-keystore-usage" without expanding the "grouping"
statements:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<notification
 xmlns="urn:ietf:params:xml:ns:netconf:notification:1.0">
 <eventTime>2018-05-25T00:01:00Z</eventTime>
 <keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore">
 <asymmetric-keys>
 <asymmetric-key>
 <name>hidden-asymmetric-key</name>
 <certificates>
 <certificate>
 <name>my-ldevid-cert</name>
 <certificate-expiration>
 <expiration-date>2018-08-05T14:18:53-05:00</expiration\
-date>
 </certificate-expiration>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
 </keystore>
</notification>

[RFC8340]

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 15

The following tree diagram illustrates the "ex-keystore-usage" module with all "grouping"
statements expanded, enabling the usage's full structure to be seen:

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ex-keystore-usage
 +--rw keystore-usage
 +--rw symmetric-key* [name]
 | +--rw name string
 | +---u ks:inline-or-keystore-symmetric-key-grouping
 +--rw asymmetric-key* [name]
 | +--rw name string
 | +---u ks:inline-or-keystore-asymmetric-key-grouping
 +--rw asymmetric-key-with-certs* [name]
 | +--rw name
 | | string
 | +---u ks:inline-or-keystore-asymmetric-key-with-certs-groupi\
ng
 +--rw end-entity-cert-with-key* [name]
 +--rw name
 | string
 +---u ks:inline-or-keystore-end-entity-cert-with-key-grouping

=============== NOTE: '\' line wrapping per RFC 8792 ================

module: ex-keystore-usage
 +--rw keystore-usage
 +--rw symmetric-key* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw key-format? identityref
 | | +--rw (key-type)
 | | +--:(cleartext-symmetric-key)
 | | | +--rw cleartext-symmetric-key? binary
 | | | {cleartext-symmetric-keys}?
 | | +--:(hidden-symmetric-key)
 | | | {hidden-symmetric-keys}?
 | | | +--rw hidden-symmetric-key? empty
 | | +--:(encrypted-symmetric-key)
 | | {encrypted-symmetric-keys}?
 | | +--rw encrypted-symmetric-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--:(central-keystore)
 | {central-keystore-supported,symmetric-keys}?
 | +--rw central-keystore-reference?
 | ks:central-symmetric-key-ref
 +--rw asymmetric-key* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 16

 | | +--rw public-key-format? identityref
 | | +--rw public-key? binary
 | | +--rw private-key-format? identityref
 | | +--rw (private-key-type)
 | | +--:(cleartext-private-key)
 | | | {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key)
 | | {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--:(central-keystore)
 | {central-keystore-supported,asymmetric-keys}?
 | +--rw central-keystore-reference?
 | ks:central-asymmetric-key-ref
 +--rw asymmetric-key-with-certs* [name]
 | +--rw name string
 | +--rw (inline-or-keystore)
 | +--:(inline) {inline-definitions-supported}?
 | | +--rw inline-definition
 | | +--rw public-key-format? identityref
 | | +--rw public-key? binary
 | | +--rw private-key-format? identityref
 | | +--rw (private-key-type)
 | | | +--:(cleartext-private-key)
 | | | | {cleartext-private-keys}?
 | | | | +--rw cleartext-private-key? binary
 | | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | | +--rw hidden-private-key? empty
 | | | +--:(encrypted-private-key)
 | | | {encrypted-private-keys}?
 | | | +--rw encrypted-private-key
 | | | +--rw encrypted-by
 | | | +--rw encrypted-value-format identityref
 | | | +--rw encrypted-value binary
 | | +--rw certificates
 | | | +--rw certificate* [name]
 | | | +--rw name string
 | | | +--rw cert-data
 | | | | end-entity-cert-cms
 | | | +---n certificate-expiration
 | | | {certificate-expiration-notification}?
 | | | +-- expiration-date yang:date-and-time
 | | +---x generate-csr {csr-generation}?
 | | +---w input
 | | | +---w csr-format identityref
 | | | +---w csr-info csr-info
 | | +--ro output
 | | +--ro (csr-type)
 | | +--:(p10-csr)
 | | +--ro p10-csr? p10-csr
 | +--:(central-keystore)
 | {central-keystore-supported,asymmetric-keys}?
 | +--rw central-keystore-reference?

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 17

2.2.3.2. Example Usage for the "ex-keystore-usage" Module
The following example provides two equivalent instances of each grouping, the first being a
reference to a keystore and the second being inlined. The instance having a reference to a
keystore is consistent with the keystore defined in Section 2.2.1. The two instances are
equivalent, as the inlined instance example contains the same values defined by the keystore
instance referenced by its sibling example.

 | ks:central-asymmetric-key-ref
 +--rw end-entity-cert-with-key* [name]
 +--rw name string
 +--rw (inline-or-keystore)
 +--:(inline) {inline-definitions-supported}?
 | +--rw inline-definition
 | +--rw public-key-format? identityref
 | +--rw public-key? binary
 | +--rw private-key-format? identityref
 | +--rw (private-key-type)
 | | +--:(cleartext-private-key)
 | | | {cleartext-private-keys}?
 | | | +--rw cleartext-private-key? binary
 | | +--:(hidden-private-key) {hidden-private-keys}?
 | | | +--rw hidden-private-key? empty
 | | +--:(encrypted-private-key)
 | | {encrypted-private-keys}?
 | | +--rw encrypted-private-key
 | | +--rw encrypted-by
 | | +--rw encrypted-value-format identityref
 | | +--rw encrypted-value binary
 | +--rw cert-data?
 | | end-entity-cert-cms
 | +---n certificate-expiration
 | | {certificate-expiration-notification}?
 | | +-- expiration-date yang:date-and-time
 | +---x generate-csr {csr-generation}?
 | +---w input
 | | +---w csr-format identityref
 | | +---w csr-info csr-info
 | +--ro output
 | +--ro (csr-type)
 | +--:(p10-csr)
 | +--ro p10-csr? p10-csr
 +--:(central-keystore)
 {central-keystore-supported,asymmetric-keys}?
 +--rw central-keystore-reference
 +--rw asymmetric-key?
 | ks:central-asymmetric-key-ref
 | {central-keystore-supported,asymmetric-keys\
}?
 +--rw certificate? leafref

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore-usage
 xmlns="https://example.com/ns/example-keystore-usage"

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 18

 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-symmetric-key-grouping" grouping: -->

 <symmetric-key>
 <name>example 1a</name>
 <central-keystore-reference>cleartext-symmetric-key</central-key\
store-reference>
 </symmetric-key>

 <symmetric-key>
 <name>example 1b</name>
 <inline-definition>
 <key-format>ct:octet-string-key-format</key-format>
 <cleartext-symmetric-key>BASE64VALUE=</cleartext-symmetric-key>
 </inline-definition>
 </symmetric-key>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-asymmetric-key-grouping" grouping: -->

 <asymmetric-key>
 <name>example 2a</name>
 <central-keystore-reference>rsa-asymmetric-key</central-keystore\
-reference>
 </asymmetric-key>

 <asymmetric-key>
 <name>example 2b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 </inline-definition>
 </asymmetric-key>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-asymmetric-key-with-certs-grouping" -->
 <!-- grouping: -->

 <asymmetric-key-with-certs>
 <name>example 3a</name>
 <central-keystore-reference>rsa-asymmetric-key</central-keystore\
-reference>
 </asymmetric-key-with-certs>

 <asymmetric-key-with-certs>
 <name>example 3b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 19

2.2.3.3. The "ex-keystore-usage" YANG Module
Following is the "ex-keystore-usage" module's YANG definition:

 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <certificates>
 <certificate>
 <name>a locally defined cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </inline-definition>
 </asymmetric-key-with-certs>

 <!-- The following two equivalent examples illustrate the -->
 <!-- "inline-or-keystore-end-entity-cert-with-key-grouping" -->
 <!-- grouping: -->
 <end-entity-cert-with-key>
 <name>example 4a</name>
 <central-keystore-reference>
 <asymmetric-key>rsa-asymmetric-key</asymmetric-key>
 <certificate>ex-rsa-cert</certificate>
 </central-keystore-reference>
 </end-entity-cert-with-key>

 <end-entity-cert-with-key>
 <name>example 4b</name>
 <inline-definition>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <private-key-format>ct:rsa-private-key-format</private-key-for\
mat>
 <cleartext-private-key>BASE64VALUE=</cleartext-private-key>
 <cert-data>BASE64VALUE=</cert-data>
 </inline-definition>
 </end-entity-cert-with-key>

</keystore-usage>

module ex-keystore-usage {
 yang-version 1.1;
 namespace "https://example.com/ns/example-keystore-usage";
 prefix ex-keystore-usage;

 import ietf-keystore {
 prefix ks;
 reference
 "RFC 9642: A YANG Data Model for a Keystore and Keystore
 Operations";
 }

 organization

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 20

 "Example Corporation";

 contact
 "Author: YANG Designer <mailto:yang.designer@example.com>";

 description
 "This example module illustrates notable groupings defined
 in the 'ietf-keystore' module.";

 revision 2024-03-16 {
 description
 "Initial version";
 reference
 "RFC 9642: A YANG Data Model for a Keystore and Keystore
 Operations";
 }

 container keystore-usage {
 description
 "An illustration of the various keystore groupings.";
 list symmetric-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-symmetric-key-grouping;
 description
 "An symmetric key that may be configured locally or be a
 reference to a symmetric key in the keystore.";
 }
 list asymmetric-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-asymmetric-key-grouping;
 description
 "An asymmetric key, with no certs, that may be configured
 locally or be a reference to an asymmetric key in the
 keystore. The intent is to reference just the asymmetric
 key, not any certificates that may also be associated
 with the asymmetric key.";
 }
 list asymmetric-key-with-certs {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-asymmetric-key-with-certs-grouping;
 description
 "An asymmetric key and its associated certs that may be
 configured locally or be a reference to an asymmetric

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 21

 key (and its associated certs) in the keystore.";
 }
 list end-entity-cert-with-key {
 key "name";
 leaf name {
 type string;
 description
 "An arbitrary name for this key.";
 }
 uses ks:inline-or-keystore-end-entity-cert-with-key-grouping;
 description
 "An end-entity certificate and its associated asymmetric
 key that may be configured locally or be a reference
 to another certificate (and its associated asymmetric
 key) in the keystore.";
 }
 }
}

2.3. YANG Module
This YANG module has normative references to and .[RFC8341] [RFC9640]

<CODE BEGINS> file "ietf-keystore@2024-03-16.yang"

module ietf-keystore {
 yang-version 1.1;
 namespace "urn:ietf:params:xml:ns:yang:ietf-keystore";
 prefix ks;

 import ietf-netconf-acm {
 prefix nacm;
 reference
 "RFC 8341: Network Configuration Access Control Model";
 }

 import ietf-crypto-types {
 prefix ct;
 reference
 "RFC 9640: YANG Data Types and Groupings for Cryptography";
 }

 organization
 "IETF NETCONF (Network Configuration) Working Group";

 contact
 "WG Web: https://datatracker.ietf.org/wg/netconf
 WG List: NETCONF WG list <mailto:netconf@ietf.org>
 Author: Kent Watsen <mailto:kent+ietf@watsen.net>";

 description
 "This module defines a 'keystore' to centralize management
 of security credentials.

 The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 22

 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
 are to be interpreted as described in BCP 14 (RFC 2119)
 (RFC 8174) when, and only when, they appear in all
 capitals, as shown here.

 Copyright (c) 2024 IETF Trust and the persons identified
 as authors of the code. All rights reserved.

 Redistribution and use in source and binary forms, with
 or without modification, is permitted pursuant to, and
 subject to the license terms contained in, the Revised
 BSD License set forth in Section 4.c of the IETF Trust's
 Legal Provisions Relating to IETF Documents
 (https://trustee.ietf.org/license-info).

 This version of this YANG module is part of RFC 9642
 (https://www.rfc-editor.org/info/rfc9642); see the RFC
 itself for full legal notices.";

 revision 2024-03-16 {
 description
 "Initial version";
 reference
 "RFC 9642: A YANG Data Model for a Keystore and Keystore
 Operations";
 }

 /****************/
 /* Features */
 /****************/

 feature central-keystore-supported {
 description
 "The 'central-keystore-supported' feature indicates that
 the server supports the central keystore (i.e., fully
 implements the 'ietf-keystore' module).";
 }

 feature inline-definitions-supported {
 description
 "The 'inline-definitions-supported' feature indicates that
 the server supports locally defined keys.";
 }

 feature asymmetric-keys {
 description
 "The 'asymmetric-keys' feature indicates that the server
 implements the /keystore/asymmetric-keys subtree.";

 }

 feature symmetric-keys {
 description
 "The 'symmetric-keys' feature indicates that the server
 implements the /keystore/symmetric-keys subtree.";
 }

 /****************/

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 23

 /* Typedefs */
 /****************/

 typedef central-symmetric-key-ref {
 type leafref {
 path "/ks:keystore/ks:symmetric-keys/ks:symmetric-key"
 + "/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to a symmetric key stored in the central keystore.";
 }

 typedef central-asymmetric-key-ref {
 type leafref {
 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
 + "/ks:name";
 }
 description
 "This typedef enables modules to easily define a reference
 to an asymmetric key stored in the central keystore.";
 }

 /*****************/
 /* Groupings */
 /*****************/

 grouping encrypted-by-grouping {
 description
 "A grouping that defines a 'choice' statement that can be
 augmented into the 'encrypted-by' node, present in the
 'symmetric-key-grouping' and 'asymmetric-key-pair-grouping'
 groupings defined in RFC 9640, enabling references to keys
 in the central keystore.";
 choice encrypted-by {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice amongst other symmetric or asymmetric keys.";
 case central-symmetric-key-ref {
 if-feature "central-keystore-supported";
 if-feature "symmetric-keys";
 leaf symmetric-key-ref {
 type ks:central-symmetric-key-ref;
 description
 "Identifies the symmetric key used to encrypt the
 associated key.";
 }
 }
 case central-asymmetric-key-ref {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf asymmetric-key-ref {
 type ks:central-asymmetric-key-ref;
 description
 "Identifies the asymmetric key whose public key
 encrypted the associated key.";
 }

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 24

 }
 }
 }

 // *-ref groupings

 grouping central-asymmetric-key-certificate-ref-grouping {
 description
 "A grouping for the reference to a certificate associated
 with an asymmetric key stored in the central keystore.";
 leaf asymmetric-key {
 nacm:default-deny-write;
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 type ks:central-asymmetric-key-ref;
 must '../certificate';
 description
 "A reference to an asymmetric key in the keystore.";
 }
 leaf certificate {
 nacm:default-deny-write;
 type leafref {
 path "/ks:keystore/ks:asymmetric-keys/ks:asymmetric-key"
 + "[ks:name = current()/../asymmetric-key]/"
 + "ks:certificates/ks:certificate/ks:name";
 }
 must '../asymmetric-key';
 description
 "A reference to a specific certificate of the
 asymmetric key in the keystore.";
 }
 }

 // inline-or-keystore-* groupings

 grouping inline-or-keystore-symmetric-key-grouping {
 description
 "A grouping for the configuration of a symmetric key. The
 symmetric key may be defined inline or as a reference to
 a symmetric key stored in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:symmetric-key-grouping;
 }
 }

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 25

 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "symmetric-keys";
 leaf central-keystore-reference {
 type ks:central-symmetric-key-ref;
 description
 "A reference to a symmetric key that exists in
 the central keystore.";
 }
 }
 }
 }

 grouping inline-or-keystore-asymmetric-key-grouping {
 description
 "A grouping for the configuration of an asymmetric key. The
 asymmetric key may be defined inline or as a reference to
 an asymmetric key stored in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf central-keystore-reference {
 type ks:central-asymmetric-key-ref;
 description
 "A reference to an asymmetric key that exists in
 the central keystore. The intent is to reference
 just the asymmetric key without any regard for
 any certificates that may be associated with it.";
 }
 }
 }
 }

 grouping inline-or-keystore-asymmetric-key-with-certs-grouping {
 description
 "A grouping for the configuration of an asymmetric key and
 its associated certificates. The asymmetric key and its
 associated certificates may be defined inline or as a
 reference to an asymmetric key (and its associated
 certificates) in the central keystore.

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 26

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-with-certs-grouping;
 }
 }
 case central-keystore {
 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 leaf central-keystore-reference {
 type ks:central-asymmetric-key-ref;
 description
 "A reference to an asymmetric-key (and all of its
 associated certificates) in the keystore, when
 this module is implemented.";
 }
 }
 }
 }

 grouping inline-or-keystore-end-entity-cert-with-key-grouping {
 description
 "A grouping for the configuration of an asymmetric key and
 its associated end-entity certificate. The asymmetric key
 and its associated end-entity certificate may be defined
 inline or as a reference to an asymmetric key (and its
 associated end-entity certificate) in the central keystore.

 Servers that wish to define alternate keystore locations
 SHOULD augment in custom 'case' statements enabling
 references to those alternate keystore locations.";
 choice inline-or-keystore {
 nacm:default-deny-write;
 mandatory true;
 description
 "A choice between an inlined definition and a definition
 that exists in the keystore.";
 case inline {
 if-feature "inline-definitions-supported";
 container inline-definition {
 description
 "A container to hold the local key definition.";
 uses ct:asymmetric-key-pair-with-cert-grouping;
 }
 }
 case central-keystore {

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 27

 if-feature "central-keystore-supported";
 if-feature "asymmetric-keys";
 container central-keystore-reference {
 uses central-asymmetric-key-certificate-ref-grouping;
 description
 "A reference to a specific certificate associated with
 an asymmetric key stored in the central keystore.";
 }
 }
 }
 }

 // the keystore grouping

 grouping keystore-grouping {
 description
 "A grouping definition enables use in other contexts. If ever
 done, implementations MUST augment new 'case' statements
 into the various inline-or-keystore 'choice' statements to
 supply leafrefs to the model-specific location(s).";
 container asymmetric-keys {
 nacm:default-deny-write;
 if-feature "asymmetric-keys";
 description
 "A list of asymmetric keys.";
 list asymmetric-key {
 key "name";
 description
 "An asymmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the asymmetric key.";
 }
 uses ct:asymmetric-key-pair-with-certs-grouping;
 }
 }
 container symmetric-keys {
 nacm:default-deny-write;
 if-feature "symmetric-keys";
 description
 "A list of symmetric keys.";
 list symmetric-key {
 key "name";
 description
 "A symmetric key.";
 leaf name {
 type string;
 description
 "An arbitrary name for the symmetric key.";
 }
 uses ct:symmetric-key-grouping;
 }
 }
 }

 /*********************************/
 /* Protocol accessible nodes */

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 28

 /*********************************/

 container keystore {
 if-feature "central-keystore-supported";
 description
 "A central keystore containing a list of symmetric keys and
 a list of asymmetric keys.";
 nacm:default-deny-write;
 uses keystore-grouping {
 augment "symmetric-keys/symmetric-key/key-type/encrypted-"
 + "symmetric-key/encrypted-symmetric-key/encrypted-by" {
 description
 "Augments in a choice statement enabling the encrypting
 key to be any other symmetric or asymmetric key in the
 central keystore.";
 uses encrypted-by-grouping;
 }
 augment "asymmetric-keys/asymmetric-key/private-key-type/"
 + "encrypted-private-key/encrypted-private-key/"
 + "encrypted-by" {
 description
 "Augments in a choice statement enabling the encrypting
 key to be any other symmetric or asymmetric key in the
 central keystore.";
 uses encrypted-by-grouping;
 }
 }
 }
}

<CODE ENDS>

3. Support for Built-In Keys
In some implementations, a server may support keys built into the server. Built-in keys be
set during the manufacturing process or be dynamically generated the first time the server is
booted or a particular service (e.g., Secure Shell (SSH)) is enabled.

Built-in keys are "hidden" keys expected to be set by a vendor-specific process. Any ability for
operators to set and/or modify built-in keys is outside the scope of this document.

The primary characteristic of the built-in keys is that they are provided by the server, as opposed
to configuration. As such, they are present in <operational> () and
<system> , if implemented.

The example below illustrates what the keystore in <operational> might look like for a server in
its factory default state. Note that the built-in keys have the "or:origin" annotation value
"or:system".

MAY

Section 5.3 of [RFC8342]
[NETMOD-SYSTEM-CONFIG]

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 29

https://www.rfc-editor.org/rfc/rfc8342#section-5.3

The following example illustrates how a single built-in key definition from the previous example
has been propagated to <running>:

After the above configuration is applied, <operational> should appear as follows:

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <asymmetric-keys>
 <asymmetric-key or:origin="or:system">
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types">
 <asymmetric-keys>
 <asymmetric-key>
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate>
 <name>Deployment-Specific LDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 30

4. Encrypting Keys in Configuration
This section describes an approach that enables both the symmetric and asymmetric keys on a
server to be encrypted, such that traditional backup/restore procedures can be used without
concern for raw key data being compromised when in transit.

The approach presented in this section is not normative. This section answers how a
configuration containing secrets that are encrypted by a built-in key (Section 3) can be backed up
from one server and restored on a different server when each server has unique master keys.
The API defined by the "ietf-keystore" YANG module presented in this document is sufficient to
support the workflow described in this section.

4.1. Key Encryption Key
The ability to encrypt configured keys is predicated on the existence of a key encryption key
(KEK). There may be any number of KEKs in a server. A KEK, by its namesake, is a key that is
used to encrypt other keys. A KEK be either a symmetric key or an asymmetric key.

If a KEK is a symmetric key, then the server provide an API for administrators to encrypt
other keys without needing to know the symmetric key's value. If the KEK is an asymmetric key,
then the server provide an API enabling the encryption of other keys or, alternatively,
assume the administrators can do so themselves using the asymmetric key's public half.

=============== NOTE: '\' line wrapping per RFC 8792 ================

<keystore xmlns="urn:ietf:params:xml:ns:yang:ietf-keystore"
 xmlns:ct="urn:ietf:params:xml:ns:yang:ietf-crypto-types"
 xmlns:or="urn:ietf:params:xml:ns:yang:ietf-origin"
 or:origin="or:intended">
 <asymmetric-keys>
 <asymmetric-key or:origin="or:system">
 <name>Manufacturer-Generated Hidden Key</name>
 <public-key-format>ct:subject-public-key-info-format</public-k\
ey-format>
 <public-key>BASE64VALUE=</public-key>
 <hidden-private-key/>
 <certificates>
 <certificate>
 <name>Manufacturer-Generated IDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 <certificate or:origin="or:intended">
 <name>Deployment-Specific LDevID Cert</name>
 <cert-data>BASE64VALUE=</cert-data>
 </certificate>
 </certificates>
 </asymmetric-key>
 </asymmetric-keys>
</keystore>

MAY

MUST

SHOULD

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 31

A server possess access to the KEK, or an API using the KEK, so that it can decrypt the other
keys in the configuration at runtime.

4.2. Configuring Encrypted Keys
Each time a new key is configured, it be encrypted by a KEK.

In "ietf-crypto-types" , the format for encrypted values is described by identity
statements derived from the "symmetrically-encrypted-value-format" and "asymmetrically-
encrypted-value-format" identity statements.

Implementations of servers implementing the "ietf-keystore" module provide an API
that simultaneously generates a key and encrypts the generated key using a KEK. Thus, the
cleartext value of the newly generated key may never be known to the administrators generating
the keys. Such an API is defined in the "ietf-ssh-common" and "ietf-tls-common" YANG modules
defined in and , respectively.

In case the server implementation does not provide such an API, then the generating and
encrypting steps be performed outside the server, e.g., by an administrator with special
access control rights (such as an organization's crypto officer).

In either case, the encrypted key can be configured into the keystore using either the "encrypted-
symmetric-key" (for symmetric keys) or the "encrypted-private-key" (for asymmetric keys) nodes.
These two nodes contain both the encrypted raw key value as well as a reference to the KEK that
encrypted the key.

4.3. Migrating Configuration to Another Server
When a KEK is used to encrypt other keys, migrating the configuration to another server is only
possible if the second server has the same KEK. How the second server comes to have the same
KEK is discussed in this section.

In some deployments, mechanisms outside the scope of this document may be used to migrate a
KEK from one server to another. That said, beware that the ability to do so typically entails
having access to the first server; however, in some scenarios, the first server may no longer be
operational.

In other deployments, an organization's crypto officer, possessing a KEK's cleartext value,
configures the same KEK on the second server, presumably as a hidden key or a key protected by
access control, so that the cleartext value is not disclosed to regular administrators. However,
this approach creates high coupling to and dependency on the crypto officers that does not scale
in production environments.

In order to decouple the crypto officers from the regular administrators, a special KEK, called the
"master key" (MK), may be used.

MUST

SHOULD

[RFC9640]

SHOULD

[RFC9644] [RFC9645]

MAY

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 32

An MK is commonly a globally unique built-in (see Section 3) asymmetric key. The private raw
key value, due to its long lifetime, is hidden (i.e., "hidden-private-key"; see

). The raw public key value is often contained in an identity certificate (e.g., IDevID).
How to configure an MK during the manufacturing process is outside the scope of this document.

Assuming the server has an MK, the MK can be used to encrypt a "shared KEK", which is then
used to encrypt the keys configured by regular administrators.

With this extra level of indirection, it is possible for a crypto officer to encrypt the same KEK for a
multiplicity of servers offline using the public key contained in their identity certificates. The
crypto officer can then safely hand off the encrypted KEKs to regular administrators responsible
for server installations, including migrations.

In order to migrate the configuration from a first server, an administrator would need to make
just a single modification to the configuration before loading it onto a second server, which is to
replace the encrypted KEK keystore entry from the first server with the encrypted KEK for the
second server. Upon doing this, the configuration (containing many encrypted keys) can be
loaded into the second server while enabling the second server to decrypt all the encrypted keys
in the configuration.

The following diagram illustrates this idea:

Section 2.1.4.5. of
[RFC9640]

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 33

https://www.rfc-editor.org/rfc/rfc9640#section-2.1.4.5.

5. Security Considerations

5.1. Security of Data at Rest and in Motion
The YANG module defined in this document defines a mechanism called a "keystore" that intends
to protect its contents from unauthorized disclosure and modification.

 +-------------+ +-------------+
 | shared KEK | | shared KEK |
 |(unencrypted)|-------------------------------> | (encrypted) |
 +-------------+ encrypts offline using +-------------+
 ^ each server's MK |
 | |
 | |
 | possesses \o |
 +-------------- |\ |
 / \ shares with |
 crypto +--------------------+
 officer |
 |
 |
+----------------------+ | +----------------------+
server-1			server-2				
configuration			configuration				
+----------------+			+----------------+				
	MK-1					MK-2	
	(hidden)					(hidden)	
+----------------+			+----------------+				
^			^				
	encrypted				encrypted		
	by				by		
+----------------+			+----------------+				
	shared KEK					shared KEK	
	(encrypted)		v		(encrypted)		
+----------------+		+----------------+					
^	regular	^					
		admin					
	encrypted	\o		encrypted			
	by		\		by		
		/ \					
+----------------+	----------------->	+----------------+					
	all other keys		migrate		all other keys		
	(encrypted)		configuration		(encrypted)		
+----------------+		+----------------+					
+----------------------+ +----------------------+

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 34

In order to satisfy the expectations of a keystore, it is that server
implementations ensure that the keystore contents are encrypted when persisted to non-volatile
memory and that the keystore contents that have been decrypted in volatile memory are
zeroized when not in use.

The keystore contents may be encrypted by either encrypting the contents individually (e.g.,
using the "encrypted" value formats) or using disk-level encryption, for example, in case
cleartext values are used (which is per).

If the keystore contents are not encrypted when persisted, then server implementations
ensure the persisted storage is inaccessible.

5.2. Unconstrained Private Key Usage
This module enables the configuration of private keys without constraints on their usage, e.g.,
what operations the key is allowed to be used for (such as signature, decryption, or both).

This module also does not constrain the usage of the associated public keys other than in the
context of a configured certificate (e.g., an identity certificate), in which case the key usage is
constrained by the certificate.

RECOMMENDED

NOT RECOMMENDED Section 3.5 of [RFC9640]

MUST

5.3. Security Considerations for the "ietf-keystore" YANG Module
This section follows the template defined in .

The YANG module specified in this document defines a schema for data that is designed to be
accessed via network management protocols such as NETCONF or RESTCONF

. Both of these protocols have mandatory-to-implement secure transport layers (e.g.,
Secure Shell (SSH), TLS) with mutual authentication.

The Network Configuration Access Control Model (NACM) provides the means to
restrict access for particular users to a preconfigured subset of all available protocol operations
and content.

Please be aware that this YANG module uses groupings from other YANG modules that define
nodes that may be considered sensitive or vulnerable in network environments. Please review
the Security Considerations for dependent YANG modules for information as to which nodes may
be considered sensitive or vulnerable in network environments.

Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable
in some network environments. It is thus important to control read access (e.g., via get, get-
config, or notification) to these data nodes. These are the subtrees and data nodes and their
sensitivity/vulnerability:

Section 3.7.1 of [RFC8407]

[RFC6241]
[RFC8040]

[RFC8341]

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 35

https://www.rfc-editor.org/rfc/rfc9640#section-3.5
https://www.rfc-editor.org/rfc/rfc8407#section-3.7.1

URI:
Registrant Contact:
XML:

Name:
Maintained by IANA:
Namespace:
Prefix:
Reference:

6. IANA Considerations

6.1. The IETF XML Registry
IANA has registered the following URI in the "ns" registry of the "IETF XML Registry" .

urn:ietf:params:xml:ns:yang:ietf-keystore
The IESG

N/A; the requested URI is an XML namespace.

6.2. The YANG Module Names Registry
IANA has registered the following YANG module in the "YANG Module Names" registry defined in

.

ietf-keystore
N

urn:ietf:params:xml:ns:yang:ietf-keystore
ks

RFC 9642

The "cleartext-symmetric-key" node:
This node, imported from the "symmetric-key-grouping" grouping defined in , is
additionally sensitive to read operations such that, in normal use cases, it should never be
returned to a client. For this reason, the NACM extension "default-deny-all" was applied to it
in .

The "cleartext-private-key" node:
This node, defined in the "asymmetric-key-pair-grouping" grouping in , is
additionally sensitive to read operations such that, in normal use cases, it should never be
returned to a client. For this reason, the NACM extension "default-deny-all" is applied to it in

.

All the writable data nodes defined by this YANG module, both in the "grouping" statements as
well as the protocol-accessible "keystore" instance, may be considered sensitive or vulnerable in
some network environments. For instance, any modification to a key or reference to a key may
dramatically alter the implemented security policy. For this reason, the NACM extension "default-
deny-write" has been set for all data nodes defined in this module.

This YANG module does not define any "rpc" or "action" statements, and thus the security
considerations for such is not provided here.

Built-in key types be hidden and/or encrypted (not cleartext). If this is not possible,
access control mechanisms like NACM be used to limit access to the key's secret data to
only the most trusted authorized clients (e.g., belonging to an organization's crypto officer).

[RFC9640]

[RFC9640]

[RFC9640]

[RFC9640]

SHOULD
SHOULD

[RFC3688]

[RFC6020]

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 36

[RFC2119]

[RFC6020]

[RFC6241]

[RFC7950]

[RFC8040]

[RFC8174]

[RFC8341]

[RFC9640]

[HTTP-CLIENT-SERVER]

[NETCONF-CLIENT-SERVER]

[NETMOD-SYSTEM-CONFIG]

7. References

7.1. Normative References

, , ,
, , March 1997,
.

,
, , , October

2010, .

, , , and ,
, , ,

June 2011, .

, , ,
, August 2016, .

, , and , , ,
, January 2017, .

, ,
, , , May 2017,

.

 and , ,
, , , March 2018,

.

, , ,
, August 2024, .

7.2. Informative References

, ,
, , 15

August 2024,
.

, ,
, , 14 August

2024,
.

, , and , ,
, , 18 June

2024, .

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14
RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/info/
rfc2119>

Bjorklund, M., Ed. "YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF)" RFC 6020 DOI 10.17487/RFC6020

<https://www.rfc-editor.org/info/rfc6020>

Enns, R., Ed. Bjorklund, M., Ed. Schoenwaelder, J., Ed. A. Bierman, Ed.
"Network Configuration Protocol (NETCONF)" RFC 6241 DOI 10.17487/RFC6241

<https://www.rfc-editor.org/info/rfc6241>

Bjorklund, M., Ed. "The YANG 1.1 Data Modeling Language" RFC 7950 DOI
10.17487/RFC7950 <https://www.rfc-editor.org/info/rfc7950>

Bierman, A. Bjorklund, M. K. Watsen "RESTCONF Protocol" RFC 8040 DOI
10.17487/RFC8040 <https://www.rfc-editor.org/info/rfc8040>

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP
14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/info/
rfc8174>

Bierman, A. M. Bjorklund "Network Configuration Access Control Model"
STD 91 RFC 8341 DOI 10.17487/RFC8341 <https://www.rfc-
editor.org/info/rfc8341>

Watsen, K. "YANG Data Types and Groupings for Cryptography" RFC 9640 DOI
10.17487/RFC9640 <https://www.rfc-editor.org/info/rfc9640>

Watsen, K. "YANG Groupings for HTTP Clients and HTTP Servers"
Work in Progress Internet-Draft, draft-ietf-netconf-http-client-server-23

<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-
server-23>

Watsen, K. "NETCONF Client and Server Models" Work in
Progress Internet-Draft, draft-ietf-netconf-netconf-client-server-37

<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-
server-37>

Ma, Q., Ed. Wu, Q. C. Feng "System-defined Configuration"
Work in Progress Internet-Draft, draft-ietf-netmod-system-config-08

<https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-08>

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 37

https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc2119
https://www.rfc-editor.org/info/rfc6020
https://www.rfc-editor.org/info/rfc6241
https://www.rfc-editor.org/info/rfc7950
https://www.rfc-editor.org/info/rfc8040
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8174
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc8341
https://www.rfc-editor.org/info/rfc9640
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-http-client-server-23
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-netconf-client-server-37
https://datatracker.ietf.org/doc/html/draft-ietf-netmod-system-config-08

[RESTCONF-CLIENT-SERVER]

[RFC3688]

[RFC8340]

[RFC8342]

[RFC8407]

[RFC9641]

[RFC9643]

[RFC9644]

[RFC9645]

[Std-802.1AR-2018]

, ,
, , 14 August

2024,
.

, , , , ,
January 2004, .

 and , , , ,
, March 2018, .

, , , , and ,
, , ,

March 2018, .

,
, , , , October 2018,

.

, , ,
, August 2024, .

 and , ,
, , August 2024,
.

, , ,
, August 2024, .

, , ,
, August 2024, .

,
, , ,

August 2018, .

Acknowledgements
The authors would like to thank the following for lively discussions on list and in the halls
(ordered by first name): , , , , ,

, , , , ,
, , , , , ,

, , , , , ,
, , , , , ,

, , and .

Watsen, K. "RESTCONF Client and Server Models" Work in
Progress Internet-Draft, draft-ietf-netconf-restconf-client-server-38

<https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-
server-38>

Mealling, M. "The IETF XML Registry" BCP 81 RFC 3688 DOI 10.17487/RFC3688
<https://www.rfc-editor.org/info/rfc3688>

Bjorklund, M. L. Berger, Ed. "YANG Tree Diagrams" BCP 215 RFC 8340 DOI
10.17487/RFC8340 <https://www.rfc-editor.org/info/rfc8340>

Bjorklund, M. Schoenwaelder, J. Shafer, P. Watsen, K. R. Wilton "Network
Management Datastore Architecture (NMDA)" RFC 8342 DOI 10.17487/RFC8342

<https://www.rfc-editor.org/info/rfc8342>

Bierman, A. "Guidelines for Authors and Reviewers of Documents Containing
YANG Data Models" BCP 216 RFC 8407 DOI 10.17487/RFC8407
<https://www.rfc-editor.org/info/rfc8407>

Watsen, K. "A YANG Data Model for a Truststore" RFC 9641 DOI 10.17487/
RFC9641 <https://www.rfc-editor.org/info/rfc9641>

Watsen, K. M. Scharf "YANG Groupings for TCP Clients and TCP Servers"
RFC 9643 DOI 10.17487/RFC9643 <https://www.rfc-editor.org/info/
rfc9643>

Watsen, K. "YANG Groupings for SSH Clients and SSH Servers" RFC 9644 DOI
10.17487/RFC9644 <https://www.rfc-editor.org/info/rfc9644>

Watsen, K. "YANG Groupings for TLS Clients and TLS Servers" RFC 9645 DOI
10.17487/RFC9645 <https://www.rfc-editor.org/info/rfc9645>

IEEE "IEEE Standard for Local and Metropolitan Area Networks - Secure
Device Identity" IEEE Std 802.1AR-2018 DOI 10.1109/IEEESTD.2018.8423794

<https://standards.ieee.org/standard/802_1AR-2018.html>

Alan Luchuk Andy Bierman Balázs Kovács Benoit Claise Bert Wijnen
David Lamparter Eric Voit Éric Vyncke Francesca Palombini Jürgen Schönwälder Ladislav
Lhotka Liang Xia Magnus Nyström Mahesh Jethanandani Martin Björklund Mehmet Ersue
Murray Kucherawy Paul Wouters Phil Shafer Qin Wu Radek Krejci Ramkumar Dhanapal
Reese Enghardt Reshad Rahman Rob Wilton Roman Danyliw Sandra Murphy Sean Turner
Tom Petch Warren Kumari Zaheduzzaman Sarker

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 38

https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://datatracker.ietf.org/doc/html/draft-ietf-netconf-restconf-client-server-38
https://www.rfc-editor.org/info/rfc3688
https://www.rfc-editor.org/info/rfc8340
https://www.rfc-editor.org/info/rfc8342
https://www.rfc-editor.org/info/rfc8407
https://www.rfc-editor.org/info/rfc9641
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9643
https://www.rfc-editor.org/info/rfc9644
https://www.rfc-editor.org/info/rfc9645
https://standards.ieee.org/standard/802_1AR-2018.html

Author's Address
Kent Watsen
Watsen Networks

kent+ietf@watsen.netEmail:

RFC 9642 Keystore YANG August 2024

Watsen Standards Track Page 39

mailto:kent+ietf@watsen.net

	RFC 9642
	A YANG Data Model for a Keystore and Keystore Operations
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Relation to Other RFCs
	1.2. Specification Language
	1.3. Terminology
	1.4. Adherence to the NMDA
	1.5. Conventions

	2. The "ietf-keystore" Module
	2.1. Data Model Overview
	2.1.1. Features
	2.1.2. Typedefs
	2.1.3. Groupings
	2.1.3.1. The "encrypted-by-grouping" Grouping
	2.1.3.2. The "central-asymmetric-key-certificate-ref-grouping" Grouping
	2.1.3.3. The "inline-or-keystore-symmetric-key-grouping" Grouping
	2.1.3.4. The "inline-or-keystore-asymmetric-key-grouping" Grouping
	2.1.3.5. The "inline-or-keystore-asymmetric-key-with-certs-grouping" Grouping
	2.1.3.6. The "inline-or-keystore-end-entity-cert-with-key-grouping" Grouping
	2.1.3.7. The "keystore-grouping" Grouping

	2.1.4. Protocol-Accessible Nodes

	2.2. Example Usage
	2.2.1. A Keystore Instance
	2.2.2. A Certificate Expiration Notification
	2.2.3. The "Local or Keystore" Groupings
	2.2.3.1. Tree Diagrams for the "ex-keystore-usage" Module
	2.2.3.2. Example Usage for the "ex-keystore-usage" Module
	2.2.3.3. The "ex-keystore-usage" YANG Module

	2.3. YANG Module

	3. Support for Built-In Keys
	4. Encrypting Keys in Configuration
	4.1. Key Encryption Key
	4.2. Configuring Encrypted Keys
	4.3. Migrating Configuration to Another Server

	5. Security Considerations
	5.1. Security of Data at Rest and in Motion
	5.2. Unconstrained Private Key Usage
	5.3. Security Considerations for the "ietf-keystore" YANG Module

	6. IANA Considerations
	6.1. The IETF XML Registry
	6.2. The YANG Module Names Registry

	7. References
	7.1. Normative References
	7.2. Informative References

	Acknowledgements
	Author's Address

